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Increasing the performance, trustworthiness and
practical value of machine learning models: a case
study predicting hydrogen bond network
dimensionalities from molecular diagrams†‡

Andre P. Frade, a Patrick McCabe b and Richard I. Cooper *a

The performance of a model is dependent on the quality and information content of the data used to build

it. By applying machine learning approaches to a standard chemical dataset, we developed a 4-class

classification algorithm that is able to predict the hydrogen bond network dimensionality that a molecule

would adopt in its crystal form with an accuracy of 59% (in comparison to a 25% random threshold),

exclusively from two and lower dimensional molecular descriptors. Although better than random, the

performance level achieved by the model did not meet the standards for its reliable application. The

practical value of our model was improved by wrapping the model around a confidence tool that increases

model robustness, quantifies prediction trust, and allows one to operate a classifier virtually up to any

accuracy level. Using this tool, the performance of the model could be improved up to 73% or 89% with

the compromise that only 34% and 8% of the total set of test examples could be predicted. We anticipate

that the ability to adjust the performance of reliable 2D based models to the requirements of its different

applications may increase their practical value, making them suitable to tasks that range from initial virtual

library filtering to profile specific compound identification.

Introduction

Cheminformatics models promise to deliver detailed
information about compounds in a fraction of the time and
resources required by traditional methods that often involve
compound synthesis and experimental property
determination.1 However, some would argue that the majority
of published models do not meet the requirements for a
reliable practical use.2,3 The core of poor performance often
stems from limitations in the data used for model production,
whether it relates to its poor quality3,4 or lack of information
content that is relevant to the property being modelled.5

Most property prediction models are produced from feature
vector representations.6 These consist of arrays of numbers
representing chemical structure descriptors, such as molecular
weight or number of hydrogen bond donors, which together
build a molecule's profile. Different types of descriptors are

available. Two and lower dimensional descriptors are those that
can be rapidly derived from molecular formulas and diagrams
at low computational cost. Despite their deterministic
unambiguous computation, these are often limited in their
information content, usually lacking any 3D-spatial arrangement
information of the atoms.6 Given that molecules can co-exist in
multiple conformations, these descriptors may be insufficient to
fully describe a given property,7 especially those to which
conformational flexibility is highly relevant.8,9 On the other
hand, three and higher dimensional descriptors are able to
capture the three-dimensional conformation of molecules and
their interaction with the environment.6,10 Despite their high
information content, these descriptors rely on the atomic
coordinates of compounds, whose prediction is computationally
expensive and cannot be guaranteed to correspond to the
relevant conformation,1,3,11,12 which can considerably increase
the runtime of the algorithm without adding any useful
contribution,7 or even decreasing model performance.13 The
deterministic character and potential information content of
descriptors are key factors to consider during descriptor
selection, as it will have implications on property description,
but also on model performance, robustness and stability.9,14

The accuracies of models exclusively built from two and
lower dimension descriptors tend to be lower, yet we believe
that those performing reasonably better than random have
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an underestimated potential that is often left unexplored.
Thus, we suggest the development of strategies that allow the
exploitation of the prediction mechanism to provide valuable
guidance on how to improve the model performance and its
practical value.15,16

Hydrogen bond network dimensionality (HBND) describes
how hydrogen-bond intermolecular interactions extend in a
three-dimensional structure. The network expansion is
guided by the set of available hydrogen bonding groups in a
molecule and their allowed interactions.17 The resulting
dimensionality is thought to be a major cause of anisotropic
interactions in crystal structures due to its directional
nature.18,19 Although its impact is not well characterised,
dimensionalities often act as valuable complementary
information to the study of properties that are directly
influenced by slip plane arrangements in crystals, such as
crystal stability, mechanical behaviour and tabletability
performance.17,20,21

Bryant et al.17 recently described an automated method to
assign the dimensionality of a hydrogen bond network from
solved crystal structures, and have demonstrated its
effectiveness on multiple drug systems by comparison with
tabletability data. However, the reliance on solved crystal
structures as input limits the large scale implementation of
the tool. Crystals of compounds of interest are rarely available,
obtaining them is resource and time consuming, and crystal
structure predictions are computationally expensive and still
not reliable enough for such application.3,11

Machine learning predictive models have been widely
adopted as a good alternative to experimental property
determination, and 2D based quantitative structural property
relationship models (QSPRs) become particularly useful in
the HBND context. The hydrogen bond network
dimensionality problem can be formulated as a four-class
classification task, and the four possible network
dimensionality outcomes are schematically represented in
Fig. 1. In this work we present the possibility of hydrogen
bond network dimensionality prediction to any region of
chemical space, such that the screening of large virtual
libraries becomes feasible and reliable. We further develop
and test a confidence measure that adds robustness to
classification algorithms and quantifies the trust of each
output prediction. The tool also enables one to adjust the
compromise between accuracy level and prediction output
accessibility that best suits the requirements of the context

under which the model is used. This approach may enable
additional 2D-based model applications, such as robust
single molecule property prediction or production of
structure–property relationship insights.

Results and discussion
The dataset

Only organic crystals with a single chemical component were
considered, as described in the Methods section. Data
collection, cleansing and scaling resulted in a final dataset of
64084 dimensionality labelled examples – 22767 with 0D
networks, 30943 with 1D networks, 7123 with 2D networks, and
3251 with 3D networks – described by a set of 113 numerical
descriptors. From this, a class-balanced dataset was produced by
random under-sampling of over-represented classes, giving a
total of 13004 scaled examples evenly distributed across the 4
classes. The two dimensional visualization of the balanced
dataset by t-SNE (Fig. 2) shows that data points are evenly
distributed, which visually does not suggest that our data
provides a good separation between classes.

Better than random studies

The balanced dataset was used to train a selection of
statistical models (ESI‡ B). Accuracy predictions of random
data were compared against true test data to determine the
random performance threshold and check whether models
perform better than that.

As expected, the random performance threshold was
found to correspond to 25% accuracy. All models performed
considerably better than random, providing evidence that the
data is indeed informative of the property (ESI‡ B).

Model optimisation and selection

In order to find the statistical method and optimal hyper-
parameters that best suit the classification task, all methods
were reconsidered and subject to a hyper-parameter grid
search optimization. Mean cross validation accuracies were

Fig. 1 Hydrogen bonding possible interactions and resulting network
dimensionality. a) Zero dimensional, 0D, comprised of enclosed motifs
such as rings. b) One dimensional, 1D, chains. c) Two dimensional, 2D,
sheets. d) Three dimensional, 3D, when the network expands in all
possible directions.

Fig. 2 Visualization of the hydrogen bond network dimensionality
dataset by t-SNE. Each data point is an entry of the balanced dataset
that has been compressed from an original 113 dimensional space to
two dimensions, and it is coloured according to the class it belongs to.
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used to compare model performances, to reduce any accuracy
bias towards a particular dataset split.

All optimized models achieved similar results (ESI‡ B). The
multiclass implementation of the SVM RBF (radial basis
function kernel) slightly outperformed the others, attaining a
total accuracy of 59% on the test set. The corresponding
confusion matrix can be seen in Fig. 3, left. The classifier is
able to detect each class with an accuracy considerably higher
than random (random accuracy value of 0.25). The model was
further tested on the 51 080 examples discarded during class
size balancing, where the accuracy per class remained
effectively unchanged, demonstrating the generalization
capability of the model. Ultimately, these findings suggest
that hydrogen bond network dimensionality can be
approximately estimated from two dimensional molecular
descriptors. We also notice that misclassified examples tend
to be assigned to adjacent classes, suggesting that the
definition of network dimensionalities is a continuum, and so
there isn't a well-defined boundary between adjacent classes.

The learning curve (Fig. 3, right) shows that the model
tends to generalise well to unseen examples, suggesting that
no overfitting has occurred during the training stage. The
lack of convergence between training and cross validation
score lines shows high variance and suggests that the model
performance could be improved. Learning curves built from
accuracy scores also provide upper bounds for how good a
model can get using the set of descriptors considered. The
upper bound corresponds to the accuracy at which both line
scores would theoretically converge, which we estimate from
the learning curve to be between 60% and 65%. As expected,
these findings confirm the limitations of predicting three
dimensional properties like hydrogen bond network
dimensionality exclusively from two and lower dimensional
molecular descriptors. Such datasets may be incomplete in
scenarios where, for example, a single compound defined by
a unique set of two and lower dimensional features may have
the ability of adopting different packing arrangements
(polymorphs) which may lead to different network
dimensionalities in their crystal form.17

Confidence thresholds

We introduce the notion of confident thresholds and
confident guesses, to develop a confidence restriction

measure that increases the trust of predictions of any
classification model. In these settings, each prediction output
consists of the array of probabilities of an example belonging
to each class. A confident threshold is the minimal gap that
must exist between the two highest probabilities in this array,
and a confident guess occurs when this gap is satisfied. If so,
the example is assigned to the most probable class. The test
examples that the estimator is not able to predict with
confidence are not classified. These are stored and can be
passed onto another model, or to the same model subject to
a lower confidence threshold. The confidence restriction
measure was tested on the hydrogen bond network
dimensionality dataset and SVM RBF predictive model.

First we investigated the benefits of considering
confidence thresholds. To determine how many predictions
were facing a small probability difference between their two
most probable classes, the test set was first evaluated by the
model with no confidence threshold and then subject to a
5% confidence threshold. We found that whilst all examples
would be predicted under no confidence threshold, only 90%
of the test set could be confidently predicted when the 5%
confidence threshold was applied. This means that 262
examples were being assigned to a given class with only <5%
difference between the top two probability estimates.
Running models with very low confidence thresholds
suggested that some of the correct answers that the model
outputs when no thresholds are implemented turn out to be
lucky guesses. This sensitivity implies that the performance
of models with no minimal confidence restriction can rapidly
decrease when faced with noisier datasets. Thus, we conclude
that confidence threshold implementation is an efficient way
to improve the robustness and reliability of a model.

We tested the effect of increasing confidence thresholds
on the fraction of test examples that a model can predict with
confidence and the corresponding accuracy. The model was
used to predict HBND for the complete test set under
different confidence thresholds. The results are shown in
Fig. 4. For each confidence threshold used, there is a pair of
red and blue dots representing the percentage of test
examples that were predicted with confidence and
corresponding prediction accuracy. Generally, as the

Fig. 3 Confusion matrix and learning curve results for SVM RBF models
trained on two dimensional descriptors. The standard deviations of the
learning curve values are indicated by the shaded areas.

Fig. 4 Effect of confidence thresholds on the percentage of the test
set predicted with confidence and correspondent prediction accuracy.
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confidence threshold increases, the accuracy of confident
estimations also increases and does improve considerably.
Conversely, the percentage of test examples that the model is
able to predict with confidence drops rapidly. For example,
whilst the absence of a confidence restriction allowed the
model to predict the complete test set with an accuracy of
59%, a 30% threshold enabled the model to output
predictions for 34% of the test set with an accuracy of 73%,
or for 8% of the test set with an accuracy of 89% when the
threshold was increased to 60%.

When the number of confident predictions gets too small,
meaningful statistics about the general performance of the
model cannot be derived. As shown in Fig. 4, the prediction
accuracy for confidence values above 60% are obtained from
small samples that are no longer a good representation of
the original data distribution. In our case, 60% is the
maximum confidence threshold to be adopted for the
computation of a meaningful overall model performance. We
stress that despite this, the confidence associated with the
outputs obtained at high thresholds is still valid.

In summary, confidence thresholds make it possible to
operate this model up to any achievable desired level of
accuracy, however a compromise between accuracy and
access to answers is required.

Finally, we use the confidence restriction to predict the
test set over seven classification rounds of decreasing
confidence thresholds. The idea was to feed into the
classification round all the test examples that the model was
not able to confidently predict in the previous round, so the
number of confident guesses could be maximised. From the
previous results (Fig. 4), it seems reasonable to start the first
round with the highest confidence threshold of 60%.

We also note that the confidence threshold can be
continuously decreased, as long as each round of
classification still performs better than random. The results
are showed in Table 1.

As expected, gradually relaxing the confidence restriction
enables the estimation of progressively less confident new
answers at each round, which increases the fraction of the
test set predicted. The true value of this approach is its ability
to accommodate any number of rounds and threshold values,
such that the number of confident answers can be

maximised whilst controlling the overall accuracy. Likewise,
the setup enables the discrimination of estimation based on
prediction trust. For a given round, the confidence associated
to the output answers is known to lie between the confidence
threshold that the current and previous round were subjected
to. Moreover, the possibility of fine tuning the confidence
threshold step between rounds allows one to increase the
discrimination between different levels of prediction trust.
Ultimately, it becomes possible to quantify the prediction
trust associated with each prediction.

In conclusion, we believe that the confidence restriction
tool offers the possibility of tailoring the performance of a
given probability-generating classification model to the risk
and cost requirements of each project.

Experimental
Software and databases

Crystal structure information was extracted from the
Cambridge Structural Database (2019 release) using the CSD
Python API (v.2.3.0).22 Hydrogen bond network
dimensionalities were calculated as described in the Data
collection section. Molecular descriptors for each molecule
were calculated using the RDkit cheminformatics package
(2019.03.4).23 Data manipulation was handled by the Pandas
(v.0.24.2) and NumPy (v.1.17.2) packages. Machine learning
classifiers, hyperparameter optimisation routines, model
performance metrics, confusion matrix and learning curves
were implemented using the Scikit-learn (v.0.21.2) and
MatPlotlib (v.3.1.1) packages. All implementations were
executed in Jupyter Lab (v.1.0.2) using Python version v.3.7.

Data collection

The wealth of crystallographic information stored in the
Cambridge Structural Database (CSD) was exploited to
provide us with a set of molecules and corresponding crystal
information, from which network dimensionalities and
molecular descriptors could be accurately calculated.

The CSD was searched for all organic crystal structures of
a single chemical component, excluding any metals, salts,
and ions, as these present additional challenges11 that won't
be addressed in this study. Entries with disorder, errors or
incomplete information about crystal atomic coordinates or
hydrogen bonds were discarded, as they would not provide
enough information for accurate network dimensionality
calculation. Of these, molecules with more than one crystal
structure submitted to the database were removed. This step
removes conflicting data where the compound is
polymorphic and its different crystal arrangements are
reported to have different network dimensionalities.17

Accounting for this scenario would result in a multi label
classification task that will not be covered in this paper. In a
few other cases, different submissions of the same crystal
were calculated to have different network dimensionalities,
which may relate to the quality of crystal data and sensitivity

Table 1 Results per round of the SVM RBF model subject to a sequence
of six confidence restrictions. In this setup, test examples were being
predicted, and only the ones that could not be predicted with confidence
during one round would be passed onto the next (of lower threshold) for
evaluation. Accuracies are calculated per round

Conf.
threshold

Conf.
predictions

Right
predictions

Round
accuracy

60% (round 1) 198 176 89%
50% (round 2) 131 99 76%
40% (round 3) 229 164 72%
30% (round 4) 323 206 64%
20% (round 5) 501 274 55%
10% (round 6) 567 284 50%
0% (round 7) 651 267 41%
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of the dimensionality calculation tool on the definition of a
hydrogen bond interaction.

All entries meeting the above search criteria were subject
to hydrogen bond network dimensionality and numerical
descriptor calculation. Label assignment was based on a
modification to the method of Bryant et al.17 Dimensionality
was calculated through the computation of the square roots
of the eigenvalues of the covariance matrix of the atomic
coordinates of the supramolecular structures that resulted
from two different expansions of the network, through
hydrogen bond intermolecular interactions, using methods
from the CSD Python API. Ratios for each dimension before
and after the expansion were calculated, to deduce the
number of directions in which the network grew. One
hundred and fifteen descriptors of two and lower dimensions
were calculated for each molecule using the RDkit package.
The full list of descriptors can be found in the ESI‡ A.

Data pre-processing

Data processing included cleansing, scaling and class size
balancing. During cleansing, entries containing molecular
descriptor with infinite or missing values were removed
because they cannot be handled by the statistical methods to
be used. Likewise, two descriptors that were constant across
all examples were discarded, as they add no relevant
information for class separation. All remaining descriptors
were scaled to zero mean and unit variance, promoting
similar feature contribution in classifiers that operate based
on distance metrics between data points. Class size balance
was achieved by an under-sampling procedure, which
consists of reducing over-represented classes to the size of
the smallest class by random sampling. A class balancing
report that allows comparison of the distribution of a given
descriptor across different datasets was implemented to
check that each class sample is representative of the pool
that it was drawn from.

Data visualization

The balanced datasets were subject to t-Distributed
Stochastic Neighbour Embedding (t-SNE), a nonlinear
dimensionality reduction technique that embeds high
dimensional datasets into two dimensions for visualization
purposes.24

The method has two main hyperparameters, which may
greatly affect the final dataset visualization. Perplexity is
responsible for the balance between conserving the local and
global structure of data, whilst the learning rate controls step
size of the optimisation procedure. Different hyper parameter
values were tested, and although the arrangement of the
points varies between projections, the general effect and
overall conclusion are consistent. The visualization shown
was produced with a learning rate of 10 and a perplexity of
40, which lies within the limits of 5 and 50 recommended by
Hinton et al.24 Results were visualized under a colour scheme
matching points to the class they belong to.

Machine learning models

The dataset was divided into a training (80%) and test set
(20%). Several statistical methods were considered and a full
list can be found in the ESI‡ B. Each statistical model was
subject to a grid search hyperparameter optimisation under a
5-fold cross validation on the training set. The model yielding
the highest mean cross validation accuracy was further
considered. Model performance measures such as test set
accuracies, confusion matrices, and learning curves were
computed. The final model was configured to output
likelihood estimates, which are returned as arrays with the
probabilities that an example belongs to each of the existing
classes. The assignment of examples to a final class was
always derived from these arrays. Support vector machines
(SVM) are maximal margin classifiers and do not directly
generate probability estimates, which were nevertheless
obtained using 5-fold cross-validation routines.25

Better than random studies

Better than random studies were undertaken by y-
scrambling,26 which randomly shuffles the labels of the
test examples. The prediction accuracy on this new set
was held as the random accuracy threshold, and any
prediction accuracies above that was considered better
than random.

Learning curves

Learning curves show the evolution of model learning
performance as the size of the training set increases. These
plots can be used to diagnose how well the model is fitting
the training data and generalising to unseen examples, as
well as to derive upper bound accuracy limits given the
type of data at hand. The learning curve was computed
from the entire class-balanced dataset subject to a 5-fold
cross validation, using hyperparameter optimised SVM
method.

Conclusions

Reliably predicting material properties from two and lower
dimensional molecular information is a powerful strategy for
the rapid assessment of compounds from any region of
chemical space, bypassing resource intensive experimental
work. Models like this are of interest to the pharmaceutical
industry as they enable informed decisions on the most
promising drug candidates in the early stages of drug
development.

We report a 4 class classifier that estimates the hydrogen
bond network dimensionality that organic compounds may
produce in a crystal structure, with an accuracy of 59%
(where 25% is random). The limitations of predicting three
dimensional properties from two dimensional chemical
information have been discussed.

Model performance could not be improved further with
the data at hand, but we demonstrate that the model's

CrystEngCommPaper

Pu
bl

is
he

d 
on

 1
2 

M
ar

ch
 2

02
0.

 D
ow

nl
oa

de
d 

on
 9

/2
5/

20
24

 1
:2

3:
12

 A
M

. 
View Article Online

https://doi.org/10.1039/d0ce00111b


CrystEngComm, 2020, 22, 7186–7192 | 7191This journal is © The Royal Society of Chemistry 2020

practical use could be improved by increasing the confidence
of its output predictions. The confidence restriction proved
efficient in adding robustness to the model by filtering
marginal classification events due to noise in data, which we
suggest as a good practice to be adopted for any classifier
that is capable of outputting probabilities. The system further
allows one to adjust the model's performance, maximize the
number of confident predictions and discriminate them
according to level of prediction trust. Nevertheless, a
compromise between accuracy and access to answers is
required for the achievement of useful results.

We anticipate that the HBND classification model may be
useful to the pharmaceutical sector to support the early
identification of molecules with high chances of exhibiting
low plasticity levels or poor tabletability performance,17 so
precautions can be taken from the beginning of the drug
development pipeline. More broadly, we envisage that the
confidence restriction measure may be a useful
complementary tool for increasing the practical value of any
probability-generating classification algorithm.
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