Synergistic surface modulation with isotropic 2D GA2PbI4 and Lewis base enhances efficiency and stability of perovskite solar cells†
Abstract
The commonly used post-treatment agents of large-cation ammonium salts for perovskite solar cells (PSCs) exhibit significant effectiveness but still encounter limitations, as a large spacing distance within the resulting two-dimensional (2D) perovskite could impede the vertical charge transport. Herein, we introduce a multifunctional agent of guanidinium acetate (GAAc), which exhibits a synergistic effect arising from the cation and anion on regulating the perovskite's defects. Specifically, the GA+ cation transforms into a 2D perovskite of GA2PbI4, which forms a type I heterojunction with the original 3D perovskite. In contrast to the traditional anisotropic layered 2D perovskite with a preferred out-of-plane orientation, GA2PbI4 showed an isotropic orientation, which contributes to more efficient carrier transport in the vertical direction. Additionally, the lone electron pairs of Ac− can coordinate with Pb2+. The synergistic effect of the cation and anion suppresses the non-radiative charge recombination and improves the ion migration activation energy of perovskites. As a result, the GAAc-treated device achieved a remarkable power conversion efficiency (PCE) of 25.22%. When scaling up to an active area of 1 cm2, the devices still achieved a PCE of 24.18%. Moreover, the optimized device showed a T80 operational lifetime of 2073 hours at the maximum power point tracking.
- This article is part of the themed collections: Journal of Materials Chemistry A Emerging Investigators 2024 and Journal of Materials Chemistry A HOT Papers