A PEDOT based graft copolymer with enhanced electronic stability

Abstract

Poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) remains the most investigated conjugated polymer in bioelectronics, due to its biocompatibility, high conductivity, and commercial availability. Despite these advantages, it suffers from structural and electronic instability, associated with the PSS component. Here, a graft copolymer based on ionised sulfonic modified PEDOT, poly(EDOTS-g-EDOT), was electrochemically synthesised with demonstrated structural and electronic stability and enhanced electrochemical performance. The graft copolymer was insoluble in water without crosslinking, and exhibited enhanced ion diffusion upon electrochemical switching, as revealed by its volumetric capacitance (159 ± 8 F cm−3), which was significantly higher than that of spin-coated PEDOT:PSS films (41 ± 5 F cm−3). Similarly, its performance as an active channel material in organic electrochemical transistors (OECTs) was superior to the spin-coated PEDOT:PSS, as shown for instance by its high normalised transconductance (273 ± 79 S cm−1) and a significantly high ION/IOFF ratio (19 345 ± 1205). Its short- and long-term electronic stability were also confirmed with no drop in its output drain current, despite its high swelling degree. In contrast, the spin-coated PEDOT:PSS experienced a significant deterioration in its performance over the same operational time. The facile synthesis and improved performance of poly(EDOTS-g-EDOT) highlight the importance of innovative material design in overcoming existing operational shortcomings in electronic devices.

Graphical abstract: A PEDOT based graft copolymer with enhanced electronic stability

Supplementary files

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Communication
Submitted
27 May 2024
Accepted
15 Jul 2024
First published
23 Jul 2024

Mater. Horiz., 2024, Advance Article

A PEDOT based graft copolymer with enhanced electronic stability

M. Gu, L. Travaglini, D. Ta, J. Hopkins, A. Lauto, P. Wagner, K. Wagner, D. L. Officer and D. Mawad, Mater. Horiz., 2024, Advance Article , DOI: 10.1039/D4MH00654B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements