Issue 5, 2024

Explicating the effect of extraction methods on the techno-functional, structural, and in vitro prebiotic potential of soluble dietary fibers from mango and pomegranate peel

Abstract

Peel is a major bio-waste and a potential source of numerous bioactive molecules, creating immense environmental issues but no commercial significance. Thus, different extraction conditions, including chemical, enzymatic, ultrasonication, microwave, and homogenization, with varied sample concentrations at 2%, 5%, and 10% (w/v) were employed for maximum soluble dietary fiber (SDF) extraction from both mango (Totapuri and Safeda) and pomegranate (Bhagwa and Daru) peel. The maximum SDF yield of 29.26 ± 0.25% was observed at 5% w/v for homogenization-assisted enzymatic extraction (HEE) from mango peel (Safeda). The proximate and techno-functional properties of SDF exhibited efficient activity with enhanced thermal stability and structural characteristics. Scanning electron microscopy revealed a loosened and porous structure. In addition, the samples demonstrated significant prebiotic activity with the synthesis of three major short-chain fatty acids (SCFAs) in the order of propionic (3.60 ± 0.08 mg mL−1) > acetic (2.64 ± 0.01 mg mL−1) > butyric acid (1.27 ± 0.01 mg mL−1), as quantified via ultra-performance liquid chromatography (UPLC). Thereby, this study highlights the role of waste fruit peel as a potent source of SDF, exhibiting profound prebiotic activity with imminent industrial application.

Graphical abstract: Explicating the effect of extraction methods on the techno-functional, structural, and in vitro prebiotic potential of soluble dietary fibers from mango and pomegranate peel

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Paper
Submitted
30 Nov 2023
Accepted
05 Jul 2024
First published
08 Jul 2024
This article is Open Access
Creative Commons BY-NC license

Sustainable Food Technol., 2024,2, 1506-1516

Explicating the effect of extraction methods on the techno-functional, structural, and in vitro prebiotic potential of soluble dietary fibers from mango and pomegranate peel

S. Bhatt and M. Gupta, Sustainable Food Technol., 2024, 2, 1506 DOI: 10.1039/D3FB00227F

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements