Issue 35, 2024

Ba15Zr14Te42: a new complex ternary telluride structure with low thermal conductivity

Abstract

Heavier metal-based tellurides with complex structures are of great interest for thermoelectric (TE) applications. Herein, we report the synthesis of a new telluride Ba15Zr14Te42 using high-temperature reactions of elements. Our single-crystal X-ray diffraction study reveals that it crystallizes in the space group R[3 with combining macron]c of the trigonal crystal system and is isostructural to its Se analogue Ba15Zr14Se42 complex. The unit cell of the structure accommodates 426 atoms with cell dimensions of a = b = 13.2666(10) Å, c = 96.195(9) Å, and V = 14 662(3) Å3. This structure consists of 18 unique crystallographic atoms (3 × Ba, 8 × Zr, and 7 × Te). The bonding of Zr and Te atoms creates chains of 1[Zr14Te42]30−, which are separated by the Ba2+ cations. Although all the Zr atoms have a coordination number of 6, they form two types of coordination polyhedra by bonding with six Te atoms: slightly distorted octahedral and trigonal prisms of ZrTe6. We have synthesized polycrystalline Ba15Zr14Q42 (Q = Se/Te) samples, which were characterized by optical absorption studies to reveal direct bandgaps of <0.5 eV for the Te analogue and 1.3(1) eV for the Se analogue. The lattice thermal conductivity (klat) values of the samples are ultralow: ∼0.46 W mK−1 and ∼0.30 W mK−1 at 773 K for the Te and Se analogues, respectively. Temperature-dependent resistivity and thermopower studies were carried out for the Ba15Zr14Te42, which showed the p-type degenerate semiconducting nature of the sample at high temperatures. The theoretical DFT studies predict a bandgap of 0.14 eV for the Ba15Zr14Te42 phase.

Graphical abstract: Ba15Zr14Te42: a new complex ternary telluride structure with low thermal conductivity

Supplementary files

Article information

Article type
Paper
Submitted
28 Jun 2024
Accepted
19 Aug 2024
First published
27 Aug 2024

Dalton Trans., 2024,53, 14848-14857

Ba15Zr14Te42: a new complex ternary telluride structure with low thermal conductivity

S. Yadav, M. K. Niranjan and J. Prakash, Dalton Trans., 2024, 53, 14848 DOI: 10.1039/D4DT01878H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements