Extrinsically conducting MOFs: guest-promoted enhancement of electrical conductivity, thin film fabrication and applications

Abstract

Conductive metal–organic frameworks are of current interest in chemical science because of their applications in chemiresistive sensing, electrochemical energy storage, electrocatalysis, etc. Different strategies have been employed to design conductive frameworks. In this review, we discuss the influence of different types of guest species incorporated within the pores or channels of metal–organic frameworks (MOFs) and porous coordination polymers (PCPs) to generate charge transfer pathways and modulate their electrical conductivity. We have classified dopants or guest species into three different categories: (i) metal-based dopants, (ii) molecule and molecular entities and (iii) organic conducting polymers. Different types of metal ions, metal nano-clusters and metal oxides have been used to enhance electrical conductivity in MOFs. Metal ions and metal nano-clusters depend on the hopping process for efficient charge transfer whereas metal-oxides show charge transport through the metal–oxygen pathway. Several types of molecules or molecular entities ranging from neutral TCNQ, I2, and fullerene to ionic methyl viologen, organometallic like nickelcarborane, etc. have been used. In these cases, the charge transfer process varies with the guest species. When organic conducting polymers are the guest, the charge transport occurs through the polymer chains, mostly based on extended π-conjugation. Here we provide a comprehensive and critical review of these strategies to add electrical conductivity to the, in most cases, otherwise insulating MOFs and PCPs. We point out the guest encapsulation process, the geometry and structure of the resulting host–guest complex, the host–guest interactions and the charge transport mechanism for each case. We also present the methods for thin film fabrication of conducting MOFs (both, liquid–phase and gas–phase based methods) and their most relevant applications like electrocatalysis, sensing, charge storage, photoconductivity, photocatalysis,… We end this review with the main obstacles and challenges to be faced and the appealing perspectives of these 21st century materials.

Graphical abstract: Extrinsically conducting MOFs: guest-promoted enhancement of electrical conductivity, thin film fabrication and applications

Article information

Article type
Review Article
Submitted
13 May 2024
First published
22 Aug 2024
This article is Open Access
Creative Commons BY-NC license

Chem. Soc. Rev., 2024, Advance Article

Extrinsically conducting MOFs: guest-promoted enhancement of electrical conductivity, thin film fabrication and applications

R. Saha and C. J. Gómez García, Chem. Soc. Rev., 2024, Advance Article , DOI: 10.1039/D4CS00141A

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements