Synthesis, dopant solubility, and thermostructural properties of Ca10.5−xTMx(VO4)7 (TM = Co, Cu) as function of transition metal content

Houri S. Rahimi Mosafer *a, Wojciech Paszkowicz a, Roman Minikayev a, Andrew Fitch b and Marek Berkowski a
aInstitute of Physics, Polish Academy of Sciences, Al.Lotnikow 32/46, Warsaw, Poland. E-mail: rahimi@ifpan.edu.pl
bEuropean Synchrotron Radiation Facility, 71 avenue des Martyrs, Grenoble 38000, France

Received 26th June 2024 , Accepted 2nd August 2024

First published on 29th August 2024


Abstract

Crystals of Ca10.5−xTMx(VO4)7 (TM = Co, Cu), belonging to the whitlockite family, were synthesized by solid-state reaction and studied as a function of the TM content (x) for the first time. The structure was refined at ambient conditions and at high temperatures up to 1200 K using the Rietveld method. The unit cell size significantly decreases with increasing TM content up to the solubility limit, xlim, which is 0.78(3) for TM = Co and 0.75(4) for TM = Cu. Occupancy factors show a preference for the M5 site by Co/Cu. The unit cell size varies smoothly with temperature, while the axial ratio exhibits nonlinear behaviour above approximately 800 K. The thermal expansion coefficient was determined from 300–1100 K. Atomic arrangement modifications at higher temperatures are indicated by changes in the axial ratio, the thermal expansion coefficient, and the reduction of fractional TM occupancy at the M5 site at specific temperatures.


1 Introduction

Vanadates, which are multi-component oxides containing vanadium, have attracted significant attention from scientists and technologists. These compounds represent an emerging field with a wide range of applications. Studies have highlighted their usefulness in various areas, including in medicine,1 optoelectronics,2,3 solar-energy-driven water oxidation,4 catalytic generation of molecular oxygen,5 catalytic water splitting,6 and for energy storage applications.7 Among these vanadates are those of whitlockite structure.

Whitlockite, named after Herbert Percy Whitlock (1868–1948), an American mineralogist, is a mineral of the idealized formula Ca9(MgFe2+)(PO4)6PO3OH. Synthetic and natural materials crystallizing in whitlockite-type structures form an extended family of compounds, including multiple phosphates, vanadates, and several arsenates. Such compounds crystallize in R3c space group with the unit cell size of a ≈ 10–11 Å, c ≈ 37–39 Å.

The addition of substituent at cationic sites within the parent compound, β-Ca3(PO4)2 (β-TCP) or Ca3(VO4)7 (TCV), is an effective tool to modify physicochemical properties of the material. Generally, transition metal ions can be incorporated into the lattice of luminescent materials in order to improve their optical behavior. For instance, cobalt doping enhances the emission and absorption efficiencies of various inorganic hosts, e.g., TiO2 and perovskite.8,9As some substituted or/and doped rare earth into TCV are known to be connected with attractive optoelectronic properties,10–16 co-substitution of rare earth with transition metal enhance the luminescence properties.17 For the case of structurally related material, co-substitution of Mn2+ with rare earth into β-TCP improve the luminescence properties.18,19

On the other hand, the catalytic behavior of Ca3−xCox(PO4)2 and Ca10.5−xCux(PO4)7 has been demonstrated.20,21 For instance, the catalytic behavior of Ca10.5−xCux(PO4)7 was studied in butan-2-ol conversion. The maximum activity in dehydrogenation was obtained by increasing the content of copper in such orthophosphate.

Only a limited number of studies have been reported on the substitution of divalent ions in TCV,22–25 but interest in these materials is growing. In our previous work, we studied the effect of substituting nickel into TCV at ambient and high temperatures to determine the solubility limit and thermal expansion coefficient (TEC).25 Additionally, two selected samples of Co and Cu were studied within a limited temperature range (300–800 K).23 To extend our knowledge about the thermostructural properties of divalent ions substituted into TCV, whitlockite-type crystals, Ca10.5−xTMx(VO4)7 (TM = Co, Cu) (TM-TCV), are presented in this work based on room and high-temperature (300–1200 K) X-ray powder diffraction studies. The high-temperature investigation focuses on the impact of the transition metal content (x) on the thermal expansion behavior of these compounds.

2 Materials and methods

Polycrystalline samples with the formula Ca10.5−xTMx(VO4)7 (TM = Co, Cu), where x = 0–1 (sample names as S1–S6 refer to x = 0.16–1, whereas data for x = 0 are taken from our previous work34), were synthesized by solid-state reaction. The samples were prepared using stoichiometric ratios of CaCO3 (99.995%), CoO (99.7%) (or CuO (99.9%)), and V2O5 (99.995%). For each composition, the powders were mixed and formed into pellets at air atmosphere. Calcination of the pellets took place in three steps sequentially, each lasting 6 hours. The temperature was set at 1273 K for the first step and maintained at 1173 K for the subsequent two steps. The compound formation proceeded in accordance with the given reaction:
(10.5 − x)CaCO3 + 3.5V2O5 + xTMO → Ca10.5−xTMx(VO4)7 + Co2

Room temperature X-ray powder diffraction (XRPD) measurements were performed using a Philips XPert Pro Alpha1 diffractometer with CuKα1 radiation. The experimental configuration followed Bragg–Brentano geometry and operated in continuous scanning mode. The diffractometer was equipped with a linear silicon strip detector, and in room temperature (RT) studies, a Ge(111) Johansson monochromator for the incident beam was employed. The use of such a detector was initially outlined in ref. 26, and details of the instruments settings can be found in the ref. 27. Powder X-ray diffraction data were collected at room temperature within the 6°–159.2° (2θ) range, employing a step size of 0.0167°. Crystal structures were refined using the Rietveld method28,29 (Fullprof software version April 2019[thin space (1/6-em)]30). High temperature diffraction measurements were carried out using the same diffractometer equipped with an HTK 1200 N (Anton Paar) temperature stage, in the Bragg–Brentano geometry. These X-ray powder diffraction data were collected at high temperatures over the range of 9°–100° (2θ) with CuKα radiation. The temperature range from room temperature (300 K) to 1200 K was selected, with different temperature steps (usually 50 or 100 K). A waiting time of 2 minutes was imposed after each temperature step to allow the heater to stabilize, ensuring a uniform temperature distribution within the sample. High temperature (HT) powder diffraction measurements were also performed by high-resolution X-ray powder diffraction at the ID22 beamline at the European Synchrotron Radiation Facility (ESRF) in the temperature range 300(1)–1200(1) K using a hot-air blower for two selected samples. The high-resolution diffraction data were collected at HT over the angular range of 2°–40° (2θ) using a wavelength of 0.400218(4) Å. XRD patterns were measured from a fine powder of Ca10Co0.5(VO4)7 and Ca10Cu0.5(VO4)7 sealed in a 0.7 mm diameter capillary. Air atmosphere was used for both high-temperature measurements.

3 Results and discussion

3.1 Study at room temperature as function of TM content

The phase analysis based on XRPD patterns confirms the formation of whitlockite type materials with R3c space group for all samples. However, in most Ca10.5−xTMx(VO4)7 samples, a trace of Ca2V2O7 was noticed. In the case of Ca9.67Co0.83(VO4)7, a trace of cobalt garnet, Ca2.5Co2(VO4)3, was identified. Additionally, for the Ca10.34Co0.16(VO4)7, Ca10.34Cu0.16(VO4)7 and Ca10.17Cu0.33(VO4)7 samples, some foreign peaks were observed, but the corresponding phase was not identified. Despite additional annealing of these samples, the foreign phase remained. For all samples, Rietveld refinement was performed by employing the structure of Ca2.71Mg0.29(PO4)2[thin space (1/6-em)]31 as initial model. For peak shape determination, a pseudo-Voigt function was used. Two asymmetry parameters were considered. For more details see ref. 23. The refinement process yielded fractional replacement of Ca by TM. The refinement result of Ca9.84Co0.66(VO4)7 at room temperature (298(2) K) (Fig. 1) is a representative example for good matching between the observed diffraction pattern and calculated pattern after refinement and also the quality of refinement. In the case of Ca10.5−xCox(VO4)7, Ca2V2O7 phase increases slightly from x = 0.33, with its proportion rising from 1.4 wt% to 2.4 wt% for x = 1. Similarly, for Ca10.5−xCux(VO4)7 samples, a secondary phase related to Ca2V2O7 started to appear from x = 0.5. The proportion of this phase gradually increased from 3.3% at x = 0.5 to 6.2% at x = 1. The lattice parameters of the minor phase, Ca2V2O7, closely matched those reported in ref. 32. Additionally, structural data for the garnet Ca2.5Co2(VO4)3, which appears in the samples with x = 0.83 and 1, are taken from ref. 33.
image file: d4dt01850h-f1.tif
Fig. 1 Rietveld refinement of Ca9.64Co0.66(VO4)7 at room temperature. Black circles correspond to experimental data, green line to the calculated profile, orange vertical bar to the Bragg reflections and the red line to the difference between experimental and calculated intensity. The inset present a magnified view of the 80–130° region of the refinement in order to illustrate the quality of refinement.
3.1.1 Lattice parameters. The substitution of transition metals (Co, Cu) into Ca3(VO4)2 leads to changes in the refined lattice parameters of the TCV structure. The study of the evolution of lattice parameters a and c, along with the unit cell volume, with varying substituent content (x) demonstrated a nearly linear decrease in the lattice parameters below x = 0.83 (see Fig. 2 and Table 1). Specifically, for Ca10.5−xCox(VO4)7, the refined a lattice parameter decreased from 10.81388(4) Å (x = 0) to 10.77187(8) Å (x = 0.66), while the lattice parameter c decreased from 38.02858(15) Å (x = 0) to 37.73979(31) Å (x = 0.66). For Ca10.5−xCux(VO4)7, the reduction was 0.31% for a and 0.44% for c lattice parameter. The same behavior, specifically a reduction in unit cell size, was observed for the case of Ni substituted into TCV.25 This reduction is attributed to differences in the ionic radii of the calcium and transition metal ions. The ionic radii of Co2+, Cu2+ and Ca2+ ions are reported to be 0.65 Å (low spin configuration, CN = 6), 0.73 Å (CN = 6), and 1.00 Å (CN = 6), respectively.35 The observed reduction in both lattice parameters for TM-TCV is in line with earlier findings related to the substitution of divalent ions (Cu, Zn, Mg) into β-TCP.36–38 When larger ions (compared to TM), such as Pb are introduced into TCV, there is a tendency for the unit cell size to increase.38
Table 1 Structural details of Ca10.5−xTMx(VO4)7 (TM content, lattice parameters, volume, density and reliability factors) at room temperature. For all compounds the space group is R3c (Z = 6)
Sample x   a (Å) c (Å) V3) ρ (g cm−3) R p R wp Ref.
a Out of solubility limit.
0 10.809(1) 38.028(9) 3847.73 3.17 60
0 Lab 10.81221(8) 38.02620(3) 3849.840(5) 3.171 3.08 4.46 39
S1–Co 0.16 Lab 10.80015(23) 37.94714(87) 3833.269(174) 3.192 5.54 10.40 This work
S1–Cu 0.16 Lab 10.80307(18) 37.98879(68) 3839.551(113) 3.195 4.84 8.30 This work
S2–Co 0.33 Lab 10.79058(7) 37.89653(27) 3821.373(46) 3.211 2.80 3.72 This work
S2–Cu 0.33 Lab 10.79366(18) 37.93847(66) 3827.792(111) 3.211 3.60 5.28 This work
S3–Co 0.5 Lab 10.78074(4) 37.81965(23) 3806.668(38) 3.236 2.56 3.35 23
S3–Co 0.5 Sync 10.78647(1) 37.83710(5) 3812.476(8) 3.228 6.85 9.32 This work
S3–Cu 0.5 Lab 10.78708(7) 37.89966(27) 3819.211(45) 3.223 3.17 4.31 23
S3–Cu 0.5 Sync 10.79239(2) 37.91392(7) 3824.412(12) 3.215 6.05 8.22 This work
S4–Co 0.66 Lab 10.77185(8) 37.73976(31) 3792.368(52) 3.250 2.46 3.27 This work
S4–Cu 0.66 Lab 10.78061(14) 37.86170(53) 3810.814(88) 3.236 3.25 4.67 This work
S5–Co 0.83a Lab 10.76554(8) 37.67800(29) 3781.723(49) 3.262 2.32 3.05 This work
S5–Cu 0.83a Lab 10.77581(14) 37.83003(51) 3804.230(85) 3.247 3.01 4.22 This work
S6–Co 1a Lab 10.76606(8) 37.67582(31) 3781.870(52) 3.262 2.18 2.91 This work
S6–Cu 1a Lab 10.77555(6) 37.82238(25) 3803.283(40) 3.245 3.47 4.71 This work



image file: d4dt01850h-f2.tif
Fig. 2 x-dependence of the lattice parameters (a and c), axial ratio (c/a) and volume (V) of Ca10.5−xTMx(VO4)7 (solid symbols). At x = 0 (star39) and x = 0.5 (empty symbol23), data are taken from literature.
3.1.2 Solubility limit. In Ca10.5−xTMx(VO4)7,TM = Co, Cu, samples with x = 0.83 and above show no further reduction in lattice parameters and unit cell volume. This finding indicates a solid solution limit below x = 0.83. As more divalent TM ions replace Ca2+ ions in the TCV lattice, a secondary phase, Ca2.5Co2V3O12, is formed in set of samples Ca10.5−xCox(VO4)7 with x = 0.83 and higher. The solubility limit of the material can be estimated from V(x), with values of 0.78(3), and 0.75(4) observed for Ca10.5−xCox(VO4)7 and Ca10.5−xCux(VO4)7.

The reported solubility limit for several isostructural TM substituted into β-TCP has been reported to be xlim = 1 or greater than unity.37,40–42 However, in the case of orthovanadates, known examples are limited to doubly substituted compounds, such as Ca9−xMgxBi(VO4)7[thin space (1/6-em)]43 and Ca9−xBaxBi(VO4)7.44 Notably, both reported xlim values in these compounds are lower than unity (xlim = 0.7), as evidenced by phase analysis and unit cell size measurements. Recently, solubility limit of 0.72 was reported for Ca10.5−xNix(VO4)7 compounds.25 It can be concluded that the solubility limit of divalent ion substitution into TCV is smaller than for β-TCP and is between 0.7 and 0.8. From now, we define the sample with xnom = 0.83 as having the composition of x = 0.78(3) for Co substituent and 0.75(4) for Cu substituent.

3.1.3 Occupancy. Divalent ions with ionic radii smaller than that of the Ca2+ ion, such as Mn,45,46 Co,47 Cu,48 Zn,36 are consistently reported to occupy the M5 site when substituted into β-TCP. In addition to experimental results, DFT calculations for divalent ions (Mg2+, Zn2+) incorporated into the β-Ca3(PO4)2 lattice also indicate a preference for the M5 site.49,50 Given the electronic structure similarities between phosphorus and vanadium, it was expected that divalent ions introduced into TCV would predominantly select the M5 site. Various sites (M1–M5) for hosting transition metals were examined during trial Rietveld refinement. The final refinement results of laboratory data, confirm that the M5 site in column A is the most favorable site for cobalt and copper, while column B remains unchanged in composition (more information about columnar structure can be found in ref. 23, 25 and 39). This result is in line with previously work on Ni-substituted TCV.25
3.1.4 Interatomic distances. Among the five crystallographic sites for Ca2+, the M1–M5 sites differ in coordination number (CN) with oxygen atoms. The M1 site in Ca10.5−xTMx(VO4)7 structure has a seven-fold coordination environment, with average M1–O distances 2.44(1) Å for TM = Co, Cu, within the margin of error. The M2 site has an irregular eight-fold coordination with average M2–O distances of 2.54(1) Å for TM = Co, Cu, respectively. The M3–O average interatomic distances, similar to M1–O, and M2–O distances remain constant with the increase in TM content (Fig. 3).
image file: d4dt01850h-f3.tif
Fig. 3 x-dependence of average interatomic distances of 5 sites for Ca10.5−xTMx(VO4)7 (TM = Co (a), Cu (b)). At x = 0 and x = 0.5 data are taken from literature (empty symbol23 and half filled symbol39).

There is a notable change in the M5–O distances, which form the only regular polyhedron. The M5–O distances decrease from 2.31(1) Å (x = 0) to 2.13(2) Å (x = 0.78(3)) for TM = Co. Additionally, there is a reduction of 4.1% in the M5–O distance from x = 0 to x = 0.75(4) for Ca10.5−xCux(VO4)7. The presence of TM2+ at the M5 site, with a smaller ionic radius compared to Ca2+, leads to a reduction in M5–O distances which is more significant for TM = Co because of smaller ionic size in comparison to Cu. This finding supports the proposed model designating the M5 site as a favorable host for the TM substituent. However, the average M4–O distances are also reduced by adding transition metal but the percentage of reduction is less than M5–O distances. As mentioned before, the M4 site is connected to three oxygen atoms with equal bond lengths, forming a planar triangular shape in its environmental geometry. The next three oxygen atoms over the M4–O distances are at further distances, suggesting a weak bond between these oxygen atoms and the cations present at the M4 site. More detailed studies are needed to better understand this behavior.

The present results on interatomic distances are consistent with data from structurally related materials, including those where divalent ions such as Mn, Ni, and Cu have been substituted into β-TCP. Analysis of interatomic distances in Mn-substituted β-Ca3(PO4)2 also showed a decrease in M5–O distances.51 The same reduction is observed with the substitution of Ni and Cu into β-TCP.45

Further investigation conducted in the open chemistry database (OChemDb), a free online portal designed for analyzing the crystal-chemical information,52 reveals that the experimentally found values for M5–O distances in Ca10.5−xTMx(VO4)7 are close to the most frequently observed data for Co–O distances, which is 2.08 Å, and for Cu–O distances, which is 1.94 Å.

3.2 Study as function temperature for selected TM content

High-temperature measurements were carried out for selected samples, Ca10.5−xCox(VO4)7 (x = 0.5, 0.66, 0.78), and Ca10.5−xCux(VO4)7 (x = 0.5, 0.66, 0.75). For all these samples, diffraction patterns demonstrate that there is no phase transition in temperature range from room temperature (RT) up to 1200 K. With increasing temperature, the diffraction peaks shift slightly towards the low-angle side, due to a continuous lattice expansion. In some papers referring to structurally related compounds containing trivalent substituent in TCV, some anomalies in unit cell size at high temperature were reported which connect to phase transition and changes in symmetry (R3c to R[3 with combining macron]c) for Ca9X(PO4)7 where X = In,53 Fe,54 Eu.55 For crystals containing substituents such as Y and Bi, an additional phase transition possibility is a change in space group from R[3 with combining macron]c to R[3 with combining macron]m at higher temperature.56,57 Notably, for the case of TM2+ substitution, no such transition has been reported. Attempts to use the space group R[3 with combining macron]m for Ca10.5−xTMx(VO4)7 XRD patterns obtained at high temperature have not been successful. As a result, the transition in symmetry from R3c to R[3 with combining macron]m can be excluded. Notably, the R[3 with combining macron]m structure does not account for several experimentally observed peaks, specifically those with odd Miller indices such as (223), (315), and (137), which are consistent with the structure described by the R3c space group.

Laboratory Rietveld refinements results give information about variation of the lattice parameters and volume with temperature. All compounds show a consistent expansion with temperature evolution for lattice parameters (a, c) and unit cell volume up to around 800 K. At higher temperatures, an anomaly is detected in the slope of the c lattice parameter's temperature dependence. The axial ratio (as shown in Fig. 4) provides a straightforward means to observe this week feature. The trend in the c/a(T) variation is such that decreases for all compounds from room temperature until approximately 800 K. Beyond this temperature, the slope of the c/a(T) changes, suggesting that the lattice parameter c increases more rapidly with temperature than the lattice parameter a.


image file: d4dt01850h-f4.tif
Fig. 4 Variation of the lattice parameters (top), volume (bottom) and axial ratio (inset) of Ca10.5−xTMx(VO4)7 (TM = Co (a), Cu (b)) with temperature.

In general, the non-linear behavior of lattice parameters in whitlockite type materials suggests some reordering in structure occurs with rising temperature. The inflection temperature (Tinf) marks the temperature at which these changes in lattice parameters occur. Tinf decreases by increasing content of transition metals. For instance, Ca10Co0.5(VO4)7 exhibits Tinf at 871(13) K, whereas for Ca9.72Co0.78(VO4)7, Tinf occurs at 813(10) K. For Ca10.5−xCux(VO4)7, this reduction is from 809(8) to 770(9) as x increases from 0.5 to 0.75.

For many materials, including minerals of various structural complexities, an approximation of unit cell size variation with temperature (at high temperature) is successfully achieved using the Laurent polynomial (see, e.g., the review by Fei58). If anomalies in lattice parameters behavior are observed, then a different description of the variation is required. For the TM-TCV, we apply a combined approach: (I) the behavior below the anomaly is described by the Laurent polynomial, whereas (II) the evaluation of the thermal expansion coefficient (TEC) is based on the Lagrangian interpolation method which is used for the entire range. In the temperature range from RT to 800 K, the temperature dependence of the lattice parameters and volume is well described by the equation L(T) = A + BT + C/T. The same equation has been used for related materials in similar temperature range.23,25,59 Variations of thermal expansion coefficient with temperature for each variable, y, were calculated using equation

 
image file: d4dt01850h-t1.tif(1)

The majority of TEC values calculated using Lagrangian interpolation are encompassed by the lines depicted through the Laurent polynomial model (Fig. 5). The values of linear and volumetric thermal expansion coefficients from room temperature up to approximately 800–900 K do not change significantly for all studied samples. The value of TEC along the a direction is slightly larger than along the c direction. However, above the Tinf, TEC in the c direction increase faster than in the a direction for cobalt containing samples. In general terms, the anisotropic behavior of TEC above Tinf increases more significantly with temperature for TM = Ni and Co-substitution than for Cu substitution. For both series of compounds, the volumetric thermal expansion shows larger values at the highest concentration of substitution. Cu-TCV has the largest volumetric TEC value (85 MK−1) compared to Co (78 MK−1) and Ni (60 MK−1)25 substituted samples.


image file: d4dt01850h-f5.tif
Fig. 5 Temperature evolution of thermal expansion coefficient (αa, αc, αV) for Ca10.5−xCox(VO4)7[thin space (1/6-em)] x = 0.5[thin space (1/6-em)]23 (a), 0.66 (b) and 0.75 (c), Ca10.5−xCux(VO4)7[thin space (1/6-em)] x = 0.5[thin space (1/6-em)]23 (d), 0.66 (e) and 0.78 (f) and Ca10.5−xNix(VO4)7[thin space (1/6-em)]25x = 0.5 (g), 0.66 (h) and 0.72 (i) using both the Laurent and Lagrangian interpolation. Solid line represent the polynomial model.

For Ca9Gd(VO4)7, the volumetric thermal expansion is 39 MK−1 at room temperature and increases to 45 MK−1 in the range from 600–1100 K.59 One can notice that in the temperature range up to the inflection temperature, the value of volumetric thermal expansion for Ca10.5−xTMx(VO4)7 is relatively similar to Ca9Gd(VO4)7. The effect of substituting ions appears in the change in the nature of anisotropy and the increase in thermal expansion at temperatures above Tinf.

3.2.1 Synchrotron data. In contrast to laboratory data, synchrotron data enabled the refinement of the crystal structure of Ca10Co0.5(VO4)7 and Ca10Cu0.5(VO4)7 at high temperatures. Due to the large unit cell of whitlockite structure, the structure refinement requires data of good counting statistics, a high angular range and good resolution to achieve a strong reduction of peak overlap. The refinement procedures followed previously described methods, but for these two samples, the atomic coordinates were refined. The phase analysis using synchrotron data revealed that the quantity of the second phase, Ca2V2O7, remains consistent as the temperature increases. The behavior of unit cell size is in full agreement with laboratory data for these two samples (Fig. 6) with larger uncertainties (Table 1). More detailed structural data are presented in Appendix.
image file: d4dt01850h-f6.tif
Fig. 6 Temperature evolution of unit cell parameters (top), volume (bottom) and c/a axial ratio (inset) for Ca10Co0.5(VO4)7 (a) and Ca10Cu0.5(VO4)7 (b). Solid symbols correspond to the laboratory experiment and empty symbols to the synchrotron experiment.

The occupancy scheme remains unchanged up to approximately 850 K for Ca10Cu0.5(VO4)7 and up to about 900 K for Ca10Co0.5(VO4)7 (Fig. 7). However, beyond these temperatures, a progressive reduction in TM fractional occupancy at the M5 site is observed (model 1), suggesting that a fraction of the transition metals may occupy alternative sites.


image file: d4dt01850h-f7.tif
Fig. 7 Variation of TM occupancy with temperature for Ca10Co0.5(VO4)7 and Ca10Cu0.5(VO4)7 by considering two different models.

Because of high resolution of the data, other models could be considered especially to define the concurrent host sites above the inflection temperature. According to the final model, both M4 and M5 sites are the most probable joint hosts for the copper ions. The occupancy of copper ions at M5 decreases and M4 increases gradually by raising the temperature. In this model, the occupancy was constrained between M4 and M5 (model 2). However, due to the close scattering factors of Co and Ca and less reduction above Tinf, distinguishing the host site for cobalt becomes increasingly challenging. The same model 2 was considered for occupancy of cobalt ions. Further sensitive methods such as anomalous scattering or neutron diffraction are necessary to ensure that model 2 is correct for Co case and precisely determine the host sites of the transition metals above the inflection temperatures. The observed cation rearrangement with increasing temperature could account for the observed anomalies in lattice parameters (more pronounced in the axial ratio) and thermal expansion. Similar anomalies have been reported in other oxides with mixed crystallographic site occupation, such as Ca3Eu2(BO3)4.61 Specifically, changes in cation ordering, particularly in the fractional occupation of Eu3+ at sites M1 and M3, have been observed above 923 K.

4 Conclusions

This study provides the description of the Ca10.5−xTMx(VO4)7 crystal structure at room and high temperatures. Rietveld refinement of the structure from X-ray powder diffraction data defines the solubility limit which is 0.78(3) for TM = Co and 0.75(4) for TM = Cu. All samples below this limit crystallize in trigonal whitlockite-type structure type with the R3c space group. Analysis of the site occupancies at the available octahedral sites (M1–M5) shows a preference of TM2+ ions to enter the M5 site, in line with earlier reported results on the related materials of this kind, containing other small divalent ions substituting the Ca ions. Moreover, the variation of lattice parameters and thermal expansion coefficient as function of temperature was studied in range RT-1200 K for samples. Increasing temperature is found to cation rearrangement, potentially causing the observed anomalies in axial ratio and thermal expansion. The observed behavior of the axial ratio and thermal expansion coefficient as function of temperature is expected for other crystals containing small divalent substitution such as Mg and Zn (as has already been observed for the case of Ni). The structural model was analyzed to determine the occupancy of cationic sites by TM = Co, Cu at high temperature. In particular, According to the final result of structure model refinement, the M4 and M5 site are preferable sites for Cu ions above inflection temperature.

Data availability

The data presented in this study are available on request from the corresponding author.

Conflicts of interest

There are no conflicts to declare.

Appendix

Structural data of room and high temperature (see Tables 2, 3, 4, 5, 6 and 7).
Table 2 Unit cell size of Ca10Co0.5(VO4)7 as function of temperature
T (K) a (Å) c (Å) V3)
300 10.78647(1) 37.83710(5) 3812.476(8)
500 10.82000(1) 37.94221(5) 3846.872(8)
800 10.87358(1) 38.11081(5) 3902.330(9)
850 10.88250(1) 38.14127(5) 3911.857(8)
900 10.89106(1) 38.17179(5) 3921.148(7)
950 10.89953(1) 38.20309(4) 3930.471(7)
1000 10.90776(1) 38.23421(4) 3939.619(6)
1100 10.92431(1) 38.29881(4) 3958.254(6)


Table 3 Unit cell size of Ca10Cu0.5(VO4)7 as function of temperature
T (K) a (Å) c (Å) V3)
300 10.79239(2) 37.91392(7) 3824.412(12)
400 10.80824(2) 37.96552(8) 3840.876(12)
650 10.84306(2) 38.08073(7) 3877.395(12)
750 10.86863(2) 38.16288(8) 3904.105(13)
850 10.88708(2) 38.22654(6) 3923.905(10)
950 10.90857(1) 38.30824(5) 3947.827(8)
1150 10.95303(1) 38.47176(4) 3997.065(6)


Table 4 Results of the structure refinement for Ca10.5−xCox(VO4)7 for x = 0.16–0.78 (laboratory data)
Site Wyckoff position Coordination x
0.16 0.33 0.5 0.66 0.78
M1 18b x 0.20300(120) 0.19855(44) 0.19940(40) 0.19861(48) 0.19865(45)
y 0.39490(112) 0.39479(44) 0.39503(40) 0.39515(50) 0.39588(46)
z 0.00171(45) 0.00282(15) 0.00223(13) 0.00191(17) 0.00177(15)
M2 18b x 0.16116(143) 0.15807(48) 0.15913(41) 0.15971(50) 0.16010(50)
y 0.28142(124) 0.27995(38) 0.27981(33) 0.27949(42) 0.27988(41)
z 0.19993(45) 0.20132(15) 0.20129(13) 0.20153(16) 0.20191(15)
M3 18b x 0.18901(130) 0.18746(42) 0.18709(36) 0.18569(43) 0.18628(44)
y 0.39510(92) 0.39678(31) 0.39854(28) 0.39728(35) 0.39674(33)
z 0.10880(43) 0.11047(14) 0.10984(12) 0.10934(15) 0.10978(14)
M4 6a x 0.0 0.0 0.0 0.0 0.0
y 0.0 0.0 0.0 0.0 0.0
z 0.07465(181) 0.07222(73) 0.07667(56) 0.07414(80) 0.07627(59)
M5 6a x 0.0 0.0 0.0 0.0 0.0
y 0.0 0.0 0.0 0.0 0.0
z 0.26577(66) 0.26523(19) 0.26578(17) 0.26513(21) 0.26493(20)
V1 6a x 0.0 0.0 0.0 0.0 0.0
y 0.0 0.0 0.0 0.0 0.0
z 0.0 0.0 0.0 0.0 0.0
V2 18b x 0.30748(96) 0.31047(28) 0.31142(25) 0.31138(31) 0.30913(31)
y 0.13353(122) 0.13665(36) 0.13810(29) 0.13809(37) 0.13613(39)
z 0.13142(41) 0.13242(13) 0.13192(12) 0.13173(15) 0.13143(14)
V3 18b x 0.34946(98) 0.34738(37) 0.34768(33) 0.34893(41) 0.34653(36)
y 0.15290(108) 0.14921(39) 0.14843(35) 0.14933(43) 0.14880(38)
z 0.23416(39) 0.23492(12) 0.23522(11) 0.23519(13) 0.23548(13)
O1 18b x 0.15100(299) 0.15330(94) 0.15290(86) 0.15226(105) 0.15330(99)
y 0.01469(359) 0.01215(122) 0.00652(121) 0.00729(146) 0.00781(136)
z 0.00910(102) 0.01031(33) 0.01343(33) 0.01146(37) 0.01254(38)
O2 6a x 0.0 0.0 0.0 0.0 0.0
y 0.0 0.0 0.0 0.0 0.0
z 0.45490(157) 0.45441(49) 0.45475(46) 0.45540(55) 0.45605(54)
O3 18b x 0.26760(356) 0.26866(117) 0.25487(101) 0.26107(12) 0.25707(116)
y 0.07878(293) 0.07064(93) 0.06459(79) 0.07032(10) 0.07151(92)
z 0.08988(99) 0.09272(29) 0.09124(26) 0.09182(31) 0.09008(32)
O4 18b x 0.23354(443) 0.23049(147) 0.22845(128) 0.22647(15) 0.22715(139)
y 0.22832(419) 0.22190(139) 0.21802(124) 0.21610(14) 0.22644(137)
z 0.14511(90) 0.14435(29) 0.14288(26) 0.14395(32) 0.14363(31)
O5 18b x 0.27948(432) 0.28277(134) 0.28027(120) 0.28261(14) 0.28426(138)
y 0.01241(340) 0.00952(108) 0.00821(96) 0.00574(11) 0.00750(108)
z 0.15439(88) 0.15531(28) 0.15533(25) 0.15575(32) 0.15593(31)
O5 18b x 0.08862(390) 0.08638(135) 0.08891(130) 0.09185(15) 0.08175(142)
y 0.17663(355) 0.18556(111) 0.18287(98) 0.18683(11) 0.17654(119)
z 0.30887(96) 0.30360(34) 0.30110(31) 0.30254(39) 0.30114(36)
O7 18b x 0.38696(385) 0.40039(114) 0.40090(102) 0.40206(122) 0.40893(119)
y 0.02553(345) 0.03365(109) 0.03090(94) 0.02853(108) 0.03040(103)
z 0.22529(108) 0.22508(33) 0.22471(30) 0.22402(37) 0.22565(36)
O8 18b x 0.03003(356) 0.02130(124) 0.01453(112) 0.01586(136) 0.02720(110)
y 0.24377(390) 0.23812(137) 0.23260(117) 0.23938(140) 0.23777(133)
z 0.37887(93) 0.37953(30) 0.37978(27) 0.38019(33) 0.37942(33)
O9 18b x 0.16929(364) 0.16909(102) 0.16647(91) 0.16012(108) 0.16548(116)
y 0.08722(477) 0.07784(149) 0.07343(131) 0.07253(166) 0.07103(148)
z 0.22964(102) 0.22290(34) 0.22394(30) 0.22531(39) 0.22601(37)
O10 18b x 0.38197(320) 0.37669(94) 0.37815(81) 0.38196(103) 0.37785(97)
y 0.17716(392) 0.18014(122) 0.18228(107) 0.18206(126) 0.18231(123)
z 0.27634(96) 0.27933(28) 0.27978(26) 0.28120(31) 0.27913(32)


Table 5 Results of the structure refinement for Ca10.5−xCux(VO4)7 for x = 0.16–0.75 (laboratory data)
Site Wyckoff position Coordination x
0.16 0.33 0.5 0.66 0.75
M1 18b x 0.20400(87) 0.20311(74) 0.19913(39) 0.19975(63) 0.20041(54)
y 0.39463(90) 0.39512(81) 0.39599(39) 0.39323(68) 0.39487(60)
z 0.00226(31) 0.00162(29) 0.00153(14) 0.00052(24) 0.00050(20)
M2 18b x 0.16085(90) 0.16250(77) 0.15918(42) 0.15955(68) 0.16088(58)
y 0.28102(81) 0.28264(70) 0.28139(35) 0.28008(57) 0.28111(49)
z 0.20025(29) 0.19955(27) 0.20022(13) 0.19961(23) 0.19988(19)
M3 18b x 0.18868(98) 0.18971(75) 0.18706(37) 0.18691(57) 0.18647(49)
y 0.39699(69) 0.39868(59) 0.39776(29) 0.39821(47) 0.39814(40)
z 0.10871(29) 0.10874(26) 0.10892(13) 0.10858(21) 0.10861(19)
M4 6a x 0.0 0.0 0.0 0.0 0.0
y 0.0 0.0 0.0 0.0 0.0
z 0.07546(124) 0.07296(106) 0.07619(64) 0.06982(116) 0.07243(92)
M5 6a x 0.0 0.0 0.0 0.0 0.0
y 0.0 0.0 0.0 0.0 0.0
z 0.26548(45) 0.26398(33) 0.26494(17) 0.26380(27) 0.26398(23)
V1 6a x 0.0 0.0 0.0 0.0 0.0
y 0.0 0.0 0.0 0.0 0.0
z 0.0 0.0 0.0 0.0 0.0
V2 18b x 0.30895(64) 0.31086(51) 0.31161(26) 0.31277(41) 0.31262(35)
y 0.13384(80) 0.13424(65) 0.13797(32) 0.13736(49) 0.13841(42)
z 0.13171(27) 0.13115(24) 0.13124(12) 0.13077(19) 0.13051(17)
V3 18b x 0.34822(82) 0.34818(71) 0.34884(34) 0.34866(58) 0.34773(51)
y 0.15433(88) 0.15138(74) 0.15021(35) 0.14994(60) 0.15038(52)
z 0.23438(27) 0.23495(23) 0.23424(11) 0.23394(18) 0.23392(15)
O1 18b x 0.14989(208) 0.15121(174) 0.15403(91) 0.15629(145) 0.15313(122)
y 0.00789(256) 0.00554(213) 0.00795(122) 0.00721(191) 0.00630(166)
z 0.00919(73) 0.00777(56) 0.01159(33) 0.00926(50) 0.00966(43)
O2 6a x 0.0 0.0 0.0 0.0 0.0
y 0.0 0.0 0.0 0.0 0.0
z 0.45103(110) 0.45300(86) 0.45348(48) 0.45288(74) 0.45268(66)
O3 18b x 0.25564(248) 0.26955(220) 0.26840(111) 0.26469(177) 0.26502(151)
y 0.07136(203) 0.06666(170) 0.07319(90) 0.07053(140) 0.06886(119)
z 0.09112(69) 0.08939(57) 0.09158(28) 0.09074(43) 0.09139(37)
O4 18b x 0.22423(315) 0.23097(247) 0.22312(129) 0.23247(209) 0.22702(177)
y 0.22377(301) 0.19674(205) 0.20931(120) 0.20610(188) 0.20474(156)
z 0.14396(66) 0.14437(54) 0.14246(28) 0.14270(45) 0.14234(38)
O5 18b x 0.28686(303) 0.29115(239) 0.28194(126) 0.28187(197) 0.28397(170)
y 0.00478(249) 0.00082(191) 0.00850(102) 0.00290(159) 0.00167(136)
z 0.15293(64) 0.15382(55) 0.15435(26) 0.15396(44) 0.15442(37)
O6 18b x 0.08516(272) 0.09116(216) 0.09040(127) 0.09600(204) 0.09473(177)
y 0.18633(251) 0.19788(178) 0.18816(97) 0.19368(154) 0.18903(134)
z 0.30819(72) 0.30275(63) 0.30187(33) 0.30142(53) 0.29952(45)
O7 18b x 0.39283(278) 0.39716(204) 0.40329(105) 0.39709(167) 0.39638(144)
y 0.02534(238) 0.02939(185) 0.03182(101) 0.02887(153) 0.02810(131)
z 0.22314(74) 0.22427(58) 0.22413(31) 0.22378(50) 0.22339(42)
O8 18b x 0.02177(276) 0.00488(256) 0.00899(127) 0.00065(201) 0.00104(176)
y 0.23691(297) 0.23780(227) 0.23627(121) 0.23164(193) 0.23287(166)
z 0.38138(70) 0.38065(57) 0.37927(28) 0.37926(47) 0.37933(40)
O9 18b x 0.16981(263) 0.16191(166) 0.16535(91) 0.16314(141) 0.16676(123)
y 0.06834(297) 0.07309(264) 0.07376(138) 0.07499(225) 0.07531(192)
z 0.22590(83) 0.22397(68) 0.22198(32) 0.22396(55) 0.22210(43)
O10 18b x 0.37551(214) 0.37918(172) 0.37850(91) 0.38054(141) 0.37942(117)
y 0.17194(264) 0.17612(209) 0.17798(115) 0.18060(178) 0.17980(152)
z 0.27814(67) 0.27769(54) 0.27846(27) 0.27869(42) 0.27825(36)


Table 6 Results of the structure refinement for Ca10Co0.5(VO4)7 for selected temperatures (synchrotron data)
Site Wyckoff position Coordination T (K)
300 500 800 1000
M1 18b x 0.19789(20) 0.19701(22) 0.19657(24) 0.19539(23)
y 0.39468(19) 0.39421(21) 0.39420(22) 0.39402(21)
z 0.00227(7) 0.00202(7) 0.00156(8) 0.00097(7)
M2 18b x 0.15938(21) 0.15893(24) 0.15828(27) 0.15673(26)
y 0.28058(19) 0.28102(21) 0.28199(22) 0.28253(21)
z 0.20153(6) 0.20126(7) 0.20071(7) 0.20015 (7)
M3 18b x 0.18611(18) 0.18632(20) 0.18739(22) 0.18773(21)
y 0.39600(15) 0.39547(16) 0.39498(17) 0.39422(16)
z 0.10957(6) 0.10917(7) 0.10849(7) 0.10779 (7)
M4 6a x 0.0 0.0 0.0 0.0
y 0.0 0.0 0.0 0.0
z 0.07791(25) 0.07829(26) 0.07837(27) 0.07864(25)
M5 6a x 0.0 0.0 0.0 0.0
y 0.0 0.0 0.0 0.0
z 0.26521(8) 0.26507(9) 0.26455(9) 0.26401(8)
V1 6a x 0.0 0.0 0.0 0.0
y 0.0 0.0 0.0 0.0
z 0.0 0.0 0.0 0.0
V2 18b x 0.31139(13) 0.31171(14) 0.31226(15) 0.31273(14)
y 0.13722(16) 0.13764(17) 0.13835(19) 0.13961(17)
z 0.13194(6) 0.13178(6) 0.13133(7) 0.13086(6)
V3 18b x 0.34894(17) 0.34909(18) 0.34920(19) 0.34949(18)
y 0.15033(17) 0.15147(18) 0.15300(20) 0.15376(19)
z 0.23506(5) 0.23480(6) 0.23428(6) 0.23367(6)
O1 18b x 0.15420(48) 0.15528(52) 0.15570(55) 0.15411(50)
y 0.00919(64) 0.01191(69) 0.01470(70) 0.01527(65)
z 0.01253(16) 0.01196(18) 0.01121(19) 0.01110(18)
O2 6a x 0.0 0.0 0.0 0.0
y 0.0 0.0 0.0 0.0
z 0.45670(24) 0.45692(26) 0.45781(27) 0.45902(25)
O3 18b x 0.26632 (59) 0.26471 (58) 0.26360 (61) 0.26365 (57)
y 0.07378(51) 0.07420(50) 0.07654(53) 0.07809(50)
z 0.09118(16) 0.09092(16) 0.09092(17) 0.09163 (16)
O4 18b x 0.22547(60) 0.22530(66) 0.22608(71) 0.22777(66)
y 0.22454(59) 0.22381(64) 0.22273(70) 0.22310 (65)
z 0.14446(14) 0.14456(15) 0.14442(16) 0.14425(15)
O5 18b x 0.28142(60) 0.28065(66) 0.27925(72) 0.27611(65)
y 0.00965(50) 0.01064(56) 0.01034(62) 0.00987 (58)
z 0.15586(12) 0.15534(14) 0.15444(15) 0.15381 (13)
O6 18b x 0.08717(62) 0.08844(68) 0.08881(73) 0.08598(67)
y 0.17671(50) 0.17756(55) 0.17791(60) 0.17794(55)
z 0.30269(16) 0.30337(19) 0.30368(21) 0.30342(19)
O7 18b x 0.40284(55) 0.40114(62) 0.40041(68) 0.40199(63)
y 0.03479(50) 0.03672(56) 0.03941(62) 0.04051(57)
z 0.22472(14) 0.22436(16) 0.22374(17) 0.22245(16)
O8 18b x 0.02467(56) 0.02445(63) 0.02367(71) 0.02520(67)
y 0.24006(54) 0.24124(61) 0.24374(66) 0.24591(61)
z 0.37940(13) 0.37930(15) 0.37903(16) 0.37883(15)
O9 18b x 0.17002(49) 0.16967(55) 0.17027(61) 0.17065(56)
y 0.07773(65) 0.07766(74) 0.07877(81) 0.07876(73)
z 0.22457(17) 0.22528(19) 0.22567(22) 0.22483(20)
O10 18b x 0.37960(49) 0.37941(54) 0.38006(58) 0.37967(55)
y 0.18284(54) 0.18313(60) 0.18346(65) 0.18534(61)
z 0.27829(14) 0.27770(15) 0.27717(16) 0.27688(14)


Table 7 Results of the structure refinement for Ca10Cu0.5(VO4)7 for selected temperatures (synchrotron data)
Site Wyckoff position Coordination T (K)
300 600 850 1150
M1 18b x 0.19748(24) 0.19760(27) 0.19733(24) 0.19148(26)
y 0.39446(23) 0.39410(25) 0.39380(22) 0.39198(22)
z 0.00189(8) 0.00150(9) 0.00096(8) 0.00089(8)
M2 18b x 0.15897(27) 0.15847(30) 0.15811(27) 0.15321(30)
y 0.28091(22) 0.28135(24) 0.28224(22) 0.28426(23)
z 0.20030(8) 0.19997(8) 0.19947(7) 0.19733(7)
M3 18b x 0.18816(22) 0.18844(24) 0.18887(22) 0.18888(23)
y 0.39672(17) 0.39590(19) 0.39526(17) 0.39511(17)
z 0.10902(7) 0.10838(8) 0.10764(7) 0.10534(7)
M4 6a x 0.0 0.0 0.0 0.0
y 0.0 0.0 0.0 0.0
z 0.07554(33) 0.07506(35) 0.07647(29) 0.07874(25)
M5 6a x 0.0 0.0 0.0 0.0
y 0.0 0.0 0.0 0.0
z 0.26465(9) 0.26439(10) 0.26410(9) 0.26320(9)
V1 6a x 0.0 0.0 0.0 0.0
y 0.0 0.0 0.0 0.0
z 0.0 0.0 0.0 0.0
V2 18b x 0.31211(16) 0.31264(17) 0.31318(15) 0.31353(14)
y 0.13773(19) 0.13886(21) 0.13935(18) 0.14255(20)
z 0.13136(7) 0.13118(7) 0.13081(6) 0.12964(6)
V3 18b x 0.34949(19) 0.34912(22) 0.34945(19) 0.35086(19)
y 0.15161(21) 0.15236(23) 0.15380(21) 0.15507(22)
z 0.23410(6) 0.23387(7) 0.23349(6) 0.23175(6)
O1 18b x 0.15406(56) 0.15405(60) 0.15388(53) 0.14720(49)
y 0.00789(75) 0.01024(80) 0.01197(70) 0.00701(71)
z 0.01214(20) 0.01132(22) 0.01149(20) 0.01603(18)
O2 6a x 0.0 0.0 0.0 0.0
y 0.0 0.0 0.0 0.0
z 0.45358(28) 0.45438(31) 0.45724(28) 0.45883(27)
O3 18b x 0.26735(64) 0.26401(69) 0.26318(61) 0.26423(59)
y 0.07517(54) 0.07628(58) 0.07861(52) 0.08374(53)
y 0.09047(17) 0.09063(19) 0.09040(17) 0.09050(15)
O4 18b x 0.22192(72) 0.22216(79) 0.22441(71) 0.22346(70)
y 0.21888(70) 0.21994(78) 0.22050(69) 0.21517(68)
z 0.14333(17) 0.14374(18) 0.14384(16) 0.14162(15)
O5 18b x 0.28262(76) 0.28126(82) 0.27928(73) 0.26979(73)
y 0.01115(62) 0.01027(69) 0.00940(62) 0.00897(68)
z 0.15372(15) 0.15305(16) 0.15237(14) 0.15001(14)
O6 18b x 0.08804(76) 0.08938(82) 0.08976(72) 0.08961(80)
y 0.17908(61) 0.17892(67) 0.17949(60) 0.18599(57)
y 0.30337(21) 0.30390(23) 0.30384(20) 0.30174(19)
O7 18b x 0.40413(66) 0.40383(74) 0.40296(67) 0.40175(69)
y 0.03615(62) 0.03847(68) 0.04003(61) 0.04051(64)
z 0.22401(17) 0.22348(20) 0.22306(17) 0.21848(16)
O8 18b x 0.01885(71) 0.01965(79) 0.02021(73) 0.01509(77)
y 0.24050(67) 0.24165(74) 0.24397(66) 0.24433(67)
z 0.37802(16) 0.37779(18) 0.37781(16) 0.37820(16)
O9 18b x 0.17064(60) 0.17106(68) 0.17199(61) 0.17195(53)
y 0.07625(83) 0.07671(91) 0.07925(83) 0.07877(82)
z 0.22433(21) 0.22504(24) 0.22491(21) 0.22019(20)
O10 18b x 0.37666(57) 0.37743(64) 0.37913(57) 0.37923(59)
y 0.17956(67) 0.17976(74) 0.18212(67) 0.18418(68)
z 0.27658(16) 0.27628(18) 0.27567(15) 0.27402(14)


Acknowledgements

The high-resolution powder diffraction at high-temperature experiments were performed on beamline ID22 at the European Synchrotron Radiation Facility (ESRF), Grenoble, France. The access to ESRF was financed by the Polish Ministry of Education and Science decision number 2021/WK/11.

References

  1. D. Rehder, Future Med. Chem., 2012, 4, 1823–1837 CrossRef CAS PubMed .
  2. H. Yu, J. Liu, H. Zhang, A. A. Kaminskii, Z. Wang and J. Wang, Laser Photonics Rev., 2014, 8, 847–864 CrossRef CAS .
  3. Y. Matsushima, T. Koide, M. Hiro-Oka, M. Shida, A. Sato, S. Sugiyama and M. Ito, J. Am. Ceram. Soc., 2015, 98, 1236–1244 CrossRef CAS .
  4. Z.-F. Huang, L. Pan, J.-J. Zou, X. Zhang and L. Wang, Nanoscale, 2014, 6, 14044–14063 RSC .
  5. J. M. Gonçalves, M. I. da Silva, L. Angnes and K. Araki, J. Mater. Chem. A, 2020, 8, 2171–2206 RSC .
  6. L. Wang, X. Shi, Y. Jia, H. Cheng, L. Wang and Q. Wang, Chin. Chem. Lett., 2021, 32, 1869–1878 CrossRef CAS .
  7. S. Pavithra, K. Pramoda and R. S. Keri, Chem. Eng. J., 2024, 153423 CrossRef CAS .
  8. P. Jiang, W. Xiang, J. Kuang, W. Liu and W. Cao, Solid State Sci., 2015, 46, 27–32 CrossRef CAS .
  9. Z. Cao, J. Li, L. Wang, K. Xing, X. Yuan, J. Zhao, X. Gao and H. Li, Mater. Res. Bull., 2020, 121, 110608 CrossRef CAS .
  10. L. Andrade, D. R. Ardila, J. P. Andreeta and M. S. Li, Opt. Mater., 2003, 22, 369–375 CrossRef CAS .
  11. L. Li, G. Wang, Y. Huang, L. Zhang, Z. Lin and G. Wang, J. Cryst. Growth, 2011, 314, 331–335 CrossRef CAS .
  12. P. Hu and G. Wang, Mater. Res. Innovations, 2011, 15, 75–77 CrossRef CAS .
  13. J. Zhao, C. Guo, J. Yu and R. Yu, Opt. Laser Technol., 2013, 45, 62–68 CrossRef CAS .
  14. N. Zhuang, X. Liu, Q. Xu, X. Chen, B. Zhao, X. Hu and J. Chen, J. Alloys Compd., 2014, 595, 113–119 CrossRef CAS .
  15. L. Ivleva, E. Dunaeva, I. Voronina, M. Doroshenko and A. Papashvili, J. Cryst. Growth, 2018, 501, 18–21 CrossRef CAS .
  16. L. Ivleva, E. Dunaeva, I. Voronina, M. Doroshenko, A. Papashvili, J. Sulc, J. Kratochvíl and H. Jelinkova, J. Cryst. Growth, 2019, 513, 10–14 CrossRef CAS .
  17. M. Dai, K. Qiu, W. Zhang and Q. Tang, J. Mater. Sci.: Mater. Electron., 2018, 29, 15052–15059 CrossRef CAS .
  18. N. Guo, Y. Huang, H. You, M. Yang, Y. Song, K. Liu and Y. Zheng, Inorg. Chem., 2010, 49, 10907–10913 CrossRef CAS PubMed .
  19. C.-H. Huang, T.-W. Kuo and T.-M. Chen, ACS Appl. Mater. Interfaces, 2010, 2, 1395–1399 CrossRef CAS PubMed .
  20. A. Benarafa, M. Kacimi, G. Coudurier and M. Ziyad, Appl. Catal., A, 2000, 196, 25–35 CrossRef CAS .
  21. A. Legrouri, S. Romdhane, J. Lenzi, M. Lenzi and G. Bonel, J. Mater. Sci., 1996, 31, 2469–2473 CrossRef CAS .
  22. I. Voronina, V. Voronov, E. Dunaeva, L. Iskhakova, A. Papashvili, M. Doroshenko and L. Ivleva, J. Cryst. Growth, 2021, 555, 125965 CrossRef CAS .
  23. H. S. Rahimi Mosafer, W. Paszkowicz, R. Minikayev, M. Kozłowski, R. Diduszko and M. Berkowski, Dalton Trans., 2021, 50, 14762–14773 RSC .
  24. G. M. Kuz'micheva, L. I. Ivleva, I. A. Kaurova, V. A. Lazarenko and E. V. Khramov, J. Solid State Chem., 2023, 318, 123776 CrossRef .
  25. H. S. Rahimi Mosafer, W. Paszkowicz, R. Minikayev, C. Martin, M. Kozłowski, O. Chukova, Y. Zhydachevskyy and S. Nedilko, Crystals, 2023, 13, 853 CrossRef .
  26. A. Zięba, W. Dąbrowski and A. Czermak, The First Polish Meeting on High-Resolution X-ray Diffraction and Topography, Szklarska Poręba, 1996, pp. 14–17.
  27. W. Paszkowicz, Nucl. Instrum. Methods Phys. Res., Sect. A, 2005, 551, 162–177 CrossRef CAS .
  28. B. Loopstra and H. Rietveld, Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem., 1969, 25, 787–791 CrossRef CAS .
  29. H. M. Rietveld, J. Appl. Crystallogr., 1969, 2, 65–71 CrossRef CAS .
  30. J. Rodriguez-Carvajal, Satellite meeting on powder diffraction of the XV congress of the IUCr, 1990.
  31. L. Schroeder, B. Dickens and W. Brown, J. Solid State Chem., 1977, 22, 253–262 CrossRef CAS .
  32. Y.-P. Tong, G.-T. Luo, Z. Jin and Y.-W. Lin, Aust. J. Chem., 2011, 64, 973–977 CrossRef CAS .
  33. K. M. Kosyl, W. Paszkowicz, R. Minikayev, M. Berkowski, M. Czech, A. Reszka and L. Kilanski, J. Alloys Compd., 2019, 779, 863–869 CrossRef CAS .
  34. R. D. Shannon, Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr., 1976, 32, 751–767 CrossRef .
  35. R. Enderle, F. Götz-Neunhoeffer, M. Göbbels, F. Müller and P. Greil, Biomaterials, 2005, 26, 3379–3384 CrossRef CAS PubMed .
  36. S. Kannan, F. Goetz-Neunhoeffer, J. Neubauer and J. M. Ferreira, J. Am. Ceram. Soc., 2009, 92, 1592–1595 CrossRef CAS .
  37. K. Spaeth, F. Goetz-Neunhoeffer and K. Hurle, J. Solid State Chem., 2020, 285, 121225 CrossRef CAS .
  38. D. V. Deyneko, D. A. Petrova, S. M. Aksenov, S. Y. Stefanovich, O. V. Baryshnikova, S. S. Fedotov, P. C. Burns, M. B. Kosmyna, A. N. Shekhovtsov and B. I. Lazoryak, CrystEngComm, 2019, 21, 1309–1319 RSC .
  39. J. Sánchez-Martín, D. Errandonea, H. S. Rahimi Mosafer, W. Paszkowicz, R. Minikayev, R. Turnbull, M. Berkowski, J. Ibáñez-Insa, C. Popescu and A. Fitch, et al. , CrystEngComm, 2023, 25, 1240–1251 RSC .
  40. A. Legrouri, J. Lenzi and M. Lenzi, J. Therm. Anal. Calorim., 1994, 41, 1041–1052 CrossRef CAS .
  41. K. Yoshida, H. Hyuga, N. Kondo, H. Kita, M. Sasaki, M. Mitamura, K. Hashimoto and Y. Toda, J. Am. Ceram. Soc., 2006, 89, 688–690 CrossRef CAS .
  42. Z. Leng, R. Li, L. Li, D. Xue, D. Zhang, G. Li, X. Chen and Y. Zhang, ACS Appl. Mater. Interfaces, 2018, 10, 33322–33334 CrossRef CAS PubMed .
  43. N. G. Dorbakov, V. V. Grebenev, V. V. Titkov, E. S. Zhukovskaya, S. Y. Stefanovich, O. V. Baryshnikova, D. V. Deyneko, V. A. Morozov, A. A. Belik and B. I. Lazoryak, J. Am. Ceram. Soc., 2018, 101, 4011–4022 CrossRef CAS .
  44. N. G. Dorbakov, V. V. Titkov, S. Y. Stefanovich, O. V. Baryshnikova, V. A. Morozov, A. A. Belik and B. I. Lazoryak, J. Alloys Compd., 2019, 793, 56–64 CrossRef CAS .
  45. A. Altomare, R. Rizzi, M. Rossi, A. El Khouri, M. Elaatmani, V. Paterlini, G. Della Ventura and F. Capitelli, Crystals, 2019, 9, 288 CrossRef CAS .
  46. J. Fan, W. Zhou, J. Luo, J. Zhang, Z.-c. Wu, X. Dai and X. Zhang, Ceram. Int., 2022, 48, 15695–15702 CrossRef CAS .
  47. A. Belik, V. Morozov, S. Khasanov and B. Lazoryak, Mater. Res. Bull., 1998, 33, 987–995 CrossRef CAS .
  48. N. Khan, V. Morozov, B. Lazoryak and S. Khasanov, Mater. Res. Bull., 1997, 32, 1211–1220 CrossRef CAS .
  49. T. Debroise, E. Colombo, G. Belletti, J. Vekeman, Y. Su, R. Papoular, N. S. Hwang, D. Bazin, M. Daudon and P. Quaino, et al. , Cryst. Growth Des., 2020, 20, 2553–2561 CrossRef CAS .
  50. K. Matsunaga, T. Kubota, K. Toyoura and A. Nakamura, Acta Biomater., 2015, 23, 329–337 CrossRef CAS PubMed .
  51. I. Mayer, S. Cohen, S. Gdalya, O. Burghaus and D. Reinen, Mater. Res. Bull., 2008, 43, 447–452 CrossRef CAS .
  52. A. Altomare, N. Corriero, C. Cuocci, A. Falcicchio, A. Moliterni and R. Rizzi, J. Appl. Crystallogr., 2018, 51, 1229–1236 CrossRef CAS .
  53. V. Morozov, A. Belik, S. Y. Stefanovich, V. Grebenev, O. Lebedev, G. Van Tendeloo and B. Lazoryak, J. Solid State Chem., 2002, 165, 278–288 CrossRef CAS .
  54. B. I. Lazoryak, V. A. Morozov, A. A. Belik, S. Y. Stefanovich, V. V. Grebenev, I. A. Leonidov, E. B. Mitberg, S. A. Davydov, O. I. Lebedev and G. Van Tendeloo, Solid State Sci., 2004, 6, 185–195 CrossRef CAS .
  55. R. A. Benhamou, A. Bessiere, G. Wallez, B. Viana, M. Elaatmani, M. Daoud and A. Zegzouti, J. Solid State Chem., 2009, 182, 2319–2325 CrossRef CAS .
  56. B. I. Lazoryak, S. M. Aksenov, S. Y. Stefanovich, N. G. Dorbakov, D. A. Belov, O. V. Baryshnikova, V. A. Morozov, M. S. Manylov and Z. Lin, J. Mater. Chem. C, 2017, 5, 2301–2310 RSC .
  57. A. A. Belik, V. A. Morozov, D. V. Deyneko, A. E. Savon, O. V. Baryshnikova, E. S. Zhukovskaya, N. G. Dorbakov, Y. Katsuya, M. Tanaka and S. Y. Stefanovich, et al. , J. Alloys Compd., 2017, 699, 928–937 CrossRef CAS .
  58. Y. Fei and T. Ahrens, Mineral physics and crystallography: a handbook of physical constants, 1995, vol. 2, pp. 29–44 Search PubMed .
  59. W. Paszkowicz, A. Shekhovtsov, M. Kosmyna, P. Loiko, E. Vilejshikova, R. Minikayev, P. Romanowski, W. Wierzchowski, K. Wieteska and C. Paulmann, et al. , Nucl. Instrum. Methods Phys. Res., Sect. B, 2017, 411, 100–111 CrossRef CAS .
  60. R. Gopal and C. Calvo, Z. Kristallogr. – Cryst. Mater., 1973, 137, 67–85 CrossRef CAS .
  61. K. M. Kosyl, W. Paszkowicz, A. N. Shekhovtsov, M. B. Kosmyna, J. Antonowicz, A. Olczak and A. N. Fitch, Acta Crystallogr., Sect. B: Struct. Sci., Cryst. Eng. Mater., 2020, 76, 554–562 CrossRef CAS PubMed .

This journal is © The Royal Society of Chemistry 2024