Houri S.
Rahimi Mosafer
*a,
Wojciech
Paszkowicz
a,
Roman
Minikayev
a,
Andrew
Fitch
b and
Marek
Berkowski
a
aInstitute of Physics, Polish Academy of Sciences, Al.Lotnikow 32/46, Warsaw, Poland. E-mail: rahimi@ifpan.edu.pl
bEuropean Synchrotron Radiation Facility, 71 avenue des Martyrs, Grenoble 38000, France
First published on 29th August 2024
Crystals of Ca10.5−xTMx(VO4)7 (TM = Co, Cu), belonging to the whitlockite family, were synthesized by solid-state reaction and studied as a function of the TM content (x) for the first time. The structure was refined at ambient conditions and at high temperatures up to 1200 K using the Rietveld method. The unit cell size significantly decreases with increasing TM content up to the solubility limit, xlim, which is 0.78(3) for TM = Co and 0.75(4) for TM = Cu. Occupancy factors show a preference for the M5 site by Co/Cu. The unit cell size varies smoothly with temperature, while the axial ratio exhibits nonlinear behaviour above approximately 800 K. The thermal expansion coefficient was determined from 300–1100 K. Atomic arrangement modifications at higher temperatures are indicated by changes in the axial ratio, the thermal expansion coefficient, and the reduction of fractional TM occupancy at the M5 site at specific temperatures.
Whitlockite, named after Herbert Percy Whitlock (1868–1948), an American mineralogist, is a mineral of the idealized formula Ca9(MgFe2+)(PO4)6PO3OH. Synthetic and natural materials crystallizing in whitlockite-type structures form an extended family of compounds, including multiple phosphates, vanadates, and several arsenates. Such compounds crystallize in R3c space group with the unit cell size of a ≈ 10–11 Å, c ≈ 37–39 Å.
The addition of substituent at cationic sites within the parent compound, β-Ca3(PO4)2 (β-TCP) or Ca3(VO4)7 (TCV), is an effective tool to modify physicochemical properties of the material. Generally, transition metal ions can be incorporated into the lattice of luminescent materials in order to improve their optical behavior. For instance, cobalt doping enhances the emission and absorption efficiencies of various inorganic hosts, e.g., TiO2 and perovskite.8,9As some substituted or/and doped rare earth into TCV are known to be connected with attractive optoelectronic properties,10–16 co-substitution of rare earth with transition metal enhance the luminescence properties.17 For the case of structurally related material, co-substitution of Mn2+ with rare earth into β-TCP improve the luminescence properties.18,19
On the other hand, the catalytic behavior of Ca3−xCox(PO4)2 and Ca10.5−xCux(PO4)7 has been demonstrated.20,21 For instance, the catalytic behavior of Ca10.5−xCux(PO4)7 was studied in butan-2-ol conversion. The maximum activity in dehydrogenation was obtained by increasing the content of copper in such orthophosphate.
Only a limited number of studies have been reported on the substitution of divalent ions in TCV,22–25 but interest in these materials is growing. In our previous work, we studied the effect of substituting nickel into TCV at ambient and high temperatures to determine the solubility limit and thermal expansion coefficient (TEC).25 Additionally, two selected samples of Co and Cu were studied within a limited temperature range (300–800 K).23 To extend our knowledge about the thermostructural properties of divalent ions substituted into TCV, whitlockite-type crystals, Ca10.5−xTMx(VO4)7 (TM = Co, Cu) (TM-TCV), are presented in this work based on room and high-temperature (300–1200 K) X-ray powder diffraction studies. The high-temperature investigation focuses on the impact of the transition metal content (x) on the thermal expansion behavior of these compounds.
(10.5 − x)CaCO3 + 3.5V2O5 + xTMO → Ca10.5−xTMx(VO4)7 + Co2↑ |
Room temperature X-ray powder diffraction (XRPD) measurements were performed using a Philips XPert Pro Alpha1 diffractometer with CuKα1 radiation. The experimental configuration followed Bragg–Brentano geometry and operated in continuous scanning mode. The diffractometer was equipped with a linear silicon strip detector, and in room temperature (RT) studies, a Ge(111) Johansson monochromator for the incident beam was employed. The use of such a detector was initially outlined in ref. 26, and details of the instruments settings can be found in the ref. 27. Powder X-ray diffraction data were collected at room temperature within the 6°–159.2° (2θ) range, employing a step size of 0.0167°. Crystal structures were refined using the Rietveld method28,29 (Fullprof software version April 201930). High temperature diffraction measurements were carried out using the same diffractometer equipped with an HTK 1200 N (Anton Paar) temperature stage, in the Bragg–Brentano geometry. These X-ray powder diffraction data were collected at high temperatures over the range of 9°–100° (2θ) with CuKα radiation. The temperature range from room temperature (300 K) to 1200 K was selected, with different temperature steps (usually 50 or 100 K). A waiting time of 2 minutes was imposed after each temperature step to allow the heater to stabilize, ensuring a uniform temperature distribution within the sample. High temperature (HT) powder diffraction measurements were also performed by high-resolution X-ray powder diffraction at the ID22 beamline at the European Synchrotron Radiation Facility (ESRF) in the temperature range 300(1)–1200(1) K using a hot-air blower for two selected samples. The high-resolution diffraction data were collected at HT over the angular range of 2°–40° (2θ) using a wavelength of 0.400218(4) Å. XRD patterns were measured from a fine powder of Ca10Co0.5(VO4)7 and Ca10Cu0.5(VO4)7 sealed in a 0.7 mm diameter capillary. Air atmosphere was used for both high-temperature measurements.
Sample | x | a (Å) | c (Å) | V (Å3) | ρ (g cm−3) | R p | R wp | Ref. | |
---|---|---|---|---|---|---|---|---|---|
a Out of solubility limit. | |||||||||
0 | 10.809(1) | 38.028(9) | 3847.73 | 3.17 | 60 | ||||
0 | Lab | 10.81221(8) | 38.02620(3) | 3849.840(5) | 3.171 | 3.08 | 4.46 | 39 | |
S1–Co | 0.16 | Lab | 10.80015(23) | 37.94714(87) | 3833.269(174) | 3.192 | 5.54 | 10.40 | This work |
S1–Cu | 0.16 | Lab | 10.80307(18) | 37.98879(68) | 3839.551(113) | 3.195 | 4.84 | 8.30 | This work |
S2–Co | 0.33 | Lab | 10.79058(7) | 37.89653(27) | 3821.373(46) | 3.211 | 2.80 | 3.72 | This work |
S2–Cu | 0.33 | Lab | 10.79366(18) | 37.93847(66) | 3827.792(111) | 3.211 | 3.60 | 5.28 | This work |
S3–Co | 0.5 | Lab | 10.78074(4) | 37.81965(23) | 3806.668(38) | 3.236 | 2.56 | 3.35 | 23 |
S3–Co | 0.5 | Sync | 10.78647(1) | 37.83710(5) | 3812.476(8) | 3.228 | 6.85 | 9.32 | This work |
S3–Cu | 0.5 | Lab | 10.78708(7) | 37.89966(27) | 3819.211(45) | 3.223 | 3.17 | 4.31 | 23 |
S3–Cu | 0.5 | Sync | 10.79239(2) | 37.91392(7) | 3824.412(12) | 3.215 | 6.05 | 8.22 | This work |
S4–Co | 0.66 | Lab | 10.77185(8) | 37.73976(31) | 3792.368(52) | 3.250 | 2.46 | 3.27 | This work |
S4–Cu | 0.66 | Lab | 10.78061(14) | 37.86170(53) | 3810.814(88) | 3.236 | 3.25 | 4.67 | This work |
S5–Co | 0.83a | Lab | 10.76554(8) | 37.67800(29) | 3781.723(49) | 3.262 | 2.32 | 3.05 | This work |
S5–Cu | 0.83a | Lab | 10.77581(14) | 37.83003(51) | 3804.230(85) | 3.247 | 3.01 | 4.22 | This work |
S6–Co | 1a | Lab | 10.76606(8) | 37.67582(31) | 3781.870(52) | 3.262 | 2.18 | 2.91 | This work |
S6–Cu | 1a | Lab | 10.77555(6) | 37.82238(25) | 3803.283(40) | 3.245 | 3.47 | 4.71 | This work |
The reported solubility limit for several isostructural TM substituted into β-TCP has been reported to be xlim = 1 or greater than unity.37,40–42 However, in the case of orthovanadates, known examples are limited to doubly substituted compounds, such as Ca9−xMgxBi(VO4)743 and Ca9−xBaxBi(VO4)7.44 Notably, both reported xlim values in these compounds are lower than unity (xlim = 0.7), as evidenced by phase analysis and unit cell size measurements. Recently, solubility limit of 0.72 was reported for Ca10.5−xNix(VO4)7 compounds.25 It can be concluded that the solubility limit of divalent ion substitution into TCV is smaller than for β-TCP and is between 0.7 and 0.8. From now, we define the sample with xnom = 0.83 as having the composition of x = 0.78(3) for Co substituent and 0.75(4) for Cu substituent.
Fig. 3 x-dependence of average interatomic distances of 5 sites for Ca10.5−xTMx(VO4)7 (TM = Co (a), Cu (b)). At x = 0 and x = 0.5 data are taken from literature (empty symbol23 and half filled symbol39). |
There is a notable change in the M5–O distances, which form the only regular polyhedron. The M5–O distances decrease from 2.31(1) Å (x = 0) to 2.13(2) Å (x = 0.78(3)) for TM = Co. Additionally, there is a reduction of 4.1% in the M5–O distance from x = 0 to x = 0.75(4) for Ca10.5−xCux(VO4)7. The presence of TM2+ at the M5 site, with a smaller ionic radius compared to Ca2+, leads to a reduction in M5–O distances which is more significant for TM = Co because of smaller ionic size in comparison to Cu. This finding supports the proposed model designating the M5 site as a favorable host for the TM substituent. However, the average M4–O distances are also reduced by adding transition metal but the percentage of reduction is less than M5–O distances. As mentioned before, the M4 site is connected to three oxygen atoms with equal bond lengths, forming a planar triangular shape in its environmental geometry. The next three oxygen atoms over the M4–O distances are at further distances, suggesting a weak bond between these oxygen atoms and the cations present at the M4 site. More detailed studies are needed to better understand this behavior.
The present results on interatomic distances are consistent with data from structurally related materials, including those where divalent ions such as Mn, Ni, and Cu have been substituted into β-TCP. Analysis of interatomic distances in Mn-substituted β-Ca3(PO4)2 also showed a decrease in M5–O distances.51 The same reduction is observed with the substitution of Ni and Cu into β-TCP.45
Further investigation conducted in the open chemistry database (OChemDb), a free online portal designed for analyzing the crystal-chemical information,52 reveals that the experimentally found values for M5–O distances in Ca10.5−xTMx(VO4)7 are close to the most frequently observed data for Co–O distances, which is 2.08 Å, and for Cu–O distances, which is 1.94 Å.
Laboratory Rietveld refinements results give information about variation of the lattice parameters and volume with temperature. All compounds show a consistent expansion with temperature evolution for lattice parameters (a, c) and unit cell volume up to around 800 K. At higher temperatures, an anomaly is detected in the slope of the c lattice parameter's temperature dependence. The axial ratio (as shown in Fig. 4) provides a straightforward means to observe this week feature. The trend in the c/a(T) variation is such that decreases for all compounds from room temperature until approximately 800 K. Beyond this temperature, the slope of the c/a(T) changes, suggesting that the lattice parameter c increases more rapidly with temperature than the lattice parameter a.
Fig. 4 Variation of the lattice parameters (top), volume (bottom) and axial ratio (inset) of Ca10.5−xTMx(VO4)7 (TM = Co (a), Cu (b)) with temperature. |
In general, the non-linear behavior of lattice parameters in whitlockite type materials suggests some reordering in structure occurs with rising temperature. The inflection temperature (Tinf) marks the temperature at which these changes in lattice parameters occur. Tinf decreases by increasing content of transition metals. For instance, Ca10Co0.5(VO4)7 exhibits Tinf at 871(13) K, whereas for Ca9.72Co0.78(VO4)7, Tinf occurs at 813(10) K. For Ca10.5−xCux(VO4)7, this reduction is from 809(8) to 770(9) as x increases from 0.5 to 0.75.
For many materials, including minerals of various structural complexities, an approximation of unit cell size variation with temperature (at high temperature) is successfully achieved using the Laurent polynomial (see, e.g., the review by Fei58). If anomalies in lattice parameters behavior are observed, then a different description of the variation is required. For the TM-TCV, we apply a combined approach: (I) the behavior below the anomaly is described by the Laurent polynomial, whereas (II) the evaluation of the thermal expansion coefficient (TEC) is based on the Lagrangian interpolation method which is used for the entire range. In the temperature range from RT to 800 K, the temperature dependence of the lattice parameters and volume is well described by the equation L(T) = A + BT + C/T. The same equation has been used for related materials in similar temperature range.23,25,59 Variations of thermal expansion coefficient with temperature for each variable, y, were calculated using equation
(1) |
The majority of TEC values calculated using Lagrangian interpolation are encompassed by the lines depicted through the Laurent polynomial model (Fig. 5). The values of linear and volumetric thermal expansion coefficients from room temperature up to approximately 800–900 K do not change significantly for all studied samples. The value of TEC along the a direction is slightly larger than along the c direction. However, above the Tinf, TEC in the c direction increase faster than in the a direction for cobalt containing samples. In general terms, the anisotropic behavior of TEC above Tinf increases more significantly with temperature for TM = Ni and Co-substitution than for Cu substitution. For both series of compounds, the volumetric thermal expansion shows larger values at the highest concentration of substitution. Cu-TCV has the largest volumetric TEC value (85 MK−1) compared to Co (78 MK−1) and Ni (60 MK−1)25 substituted samples.
Fig. 5 Temperature evolution of thermal expansion coefficient (αa, αc, αV) for Ca10.5−xCox(VO4)7 x = 0.523 (a), 0.66 (b) and 0.75 (c), Ca10.5−xCux(VO4)7 x = 0.523 (d), 0.66 (e) and 0.78 (f) and Ca10.5−xNix(VO4)725x = 0.5 (g), 0.66 (h) and 0.72 (i) using both the Laurent and Lagrangian interpolation. Solid line represent the polynomial model. |
For Ca9Gd(VO4)7, the volumetric thermal expansion is 39 MK−1 at room temperature and increases to 45 MK−1 in the range from 600–1100 K.59 One can notice that in the temperature range up to the inflection temperature, the value of volumetric thermal expansion for Ca10.5−xTMx(VO4)7 is relatively similar to Ca9Gd(VO4)7. The effect of substituting ions appears in the change in the nature of anisotropy and the increase in thermal expansion at temperatures above Tinf.
The occupancy scheme remains unchanged up to approximately 850 K for Ca10Cu0.5(VO4)7 and up to about 900 K for Ca10Co0.5(VO4)7 (Fig. 7). However, beyond these temperatures, a progressive reduction in TM fractional occupancy at the M5 site is observed (model 1), suggesting that a fraction of the transition metals may occupy alternative sites.
Fig. 7 Variation of TM occupancy with temperature for Ca10Co0.5(VO4)7 and Ca10Cu0.5(VO4)7 by considering two different models. |
Because of high resolution of the data, other models could be considered especially to define the concurrent host sites above the inflection temperature. According to the final model, both M4 and M5 sites are the most probable joint hosts for the copper ions. The occupancy of copper ions at M5 decreases and M4 increases gradually by raising the temperature. In this model, the occupancy was constrained between M4 and M5 (model 2). However, due to the close scattering factors of Co and Ca and less reduction above Tinf, distinguishing the host site for cobalt becomes increasingly challenging. The same model 2 was considered for occupancy of cobalt ions. Further sensitive methods such as anomalous scattering or neutron diffraction are necessary to ensure that model 2 is correct for Co case and precisely determine the host sites of the transition metals above the inflection temperatures. The observed cation rearrangement with increasing temperature could account for the observed anomalies in lattice parameters (more pronounced in the axial ratio) and thermal expansion. Similar anomalies have been reported in other oxides with mixed crystallographic site occupation, such as Ca3Eu2(BO3)4.61 Specifically, changes in cation ordering, particularly in the fractional occupation of Eu3+ at sites M1 and M3, have been observed above 923 K.
T (K) | a (Å) | c (Å) | V (Å3) |
---|---|---|---|
300 | 10.78647(1) | 37.83710(5) | 3812.476(8) |
500 | 10.82000(1) | 37.94221(5) | 3846.872(8) |
800 | 10.87358(1) | 38.11081(5) | 3902.330(9) |
850 | 10.88250(1) | 38.14127(5) | 3911.857(8) |
900 | 10.89106(1) | 38.17179(5) | 3921.148(7) |
950 | 10.89953(1) | 38.20309(4) | 3930.471(7) |
1000 | 10.90776(1) | 38.23421(4) | 3939.619(6) |
1100 | 10.92431(1) | 38.29881(4) | 3958.254(6) |
T (K) | a (Å) | c (Å) | V (Å3) |
---|---|---|---|
300 | 10.79239(2) | 37.91392(7) | 3824.412(12) |
400 | 10.80824(2) | 37.96552(8) | 3840.876(12) |
650 | 10.84306(2) | 38.08073(7) | 3877.395(12) |
750 | 10.86863(2) | 38.16288(8) | 3904.105(13) |
850 | 10.88708(2) | 38.22654(6) | 3923.905(10) |
950 | 10.90857(1) | 38.30824(5) | 3947.827(8) |
1150 | 10.95303(1) | 38.47176(4) | 3997.065(6) |
Site | Wyckoff position | Coordination | x | ||||
---|---|---|---|---|---|---|---|
0.16 | 0.33 | 0.5 | 0.66 | 0.78 | |||
M1 | 18b | x | 0.20300(120) | 0.19855(44) | 0.19940(40) | 0.19861(48) | 0.19865(45) |
y | 0.39490(112) | 0.39479(44) | 0.39503(40) | 0.39515(50) | 0.39588(46) | ||
z | 0.00171(45) | 0.00282(15) | 0.00223(13) | 0.00191(17) | 0.00177(15) | ||
M2 | 18b | x | 0.16116(143) | 0.15807(48) | 0.15913(41) | 0.15971(50) | 0.16010(50) |
y | 0.28142(124) | 0.27995(38) | 0.27981(33) | 0.27949(42) | 0.27988(41) | ||
z | 0.19993(45) | 0.20132(15) | 0.20129(13) | 0.20153(16) | 0.20191(15) | ||
M3 | 18b | x | 0.18901(130) | 0.18746(42) | 0.18709(36) | 0.18569(43) | 0.18628(44) |
y | 0.39510(92) | 0.39678(31) | 0.39854(28) | 0.39728(35) | 0.39674(33) | ||
z | 0.10880(43) | 0.11047(14) | 0.10984(12) | 0.10934(15) | 0.10978(14) | ||
M4 | 6a | x | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
y | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | ||
z | 0.07465(181) | 0.07222(73) | 0.07667(56) | 0.07414(80) | 0.07627(59) | ||
M5 | 6a | x | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
y | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | ||
z | 0.26577(66) | 0.26523(19) | 0.26578(17) | 0.26513(21) | 0.26493(20) | ||
V1 | 6a | x | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
y | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | ||
z | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | ||
V2 | 18b | x | 0.30748(96) | 0.31047(28) | 0.31142(25) | 0.31138(31) | 0.30913(31) |
y | 0.13353(122) | 0.13665(36) | 0.13810(29) | 0.13809(37) | 0.13613(39) | ||
z | 0.13142(41) | 0.13242(13) | 0.13192(12) | 0.13173(15) | 0.13143(14) | ||
V3 | 18b | x | 0.34946(98) | 0.34738(37) | 0.34768(33) | 0.34893(41) | 0.34653(36) |
y | 0.15290(108) | 0.14921(39) | 0.14843(35) | 0.14933(43) | 0.14880(38) | ||
z | 0.23416(39) | 0.23492(12) | 0.23522(11) | 0.23519(13) | 0.23548(13) | ||
O1 | 18b | x | 0.15100(299) | 0.15330(94) | 0.15290(86) | 0.15226(105) | 0.15330(99) |
y | 0.01469(359) | 0.01215(122) | 0.00652(121) | 0.00729(146) | 0.00781(136) | ||
z | 0.00910(102) | 0.01031(33) | 0.01343(33) | 0.01146(37) | 0.01254(38) | ||
O2 | 6a | x | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
y | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | ||
z | 0.45490(157) | 0.45441(49) | 0.45475(46) | 0.45540(55) | 0.45605(54) | ||
O3 | 18b | x | 0.26760(356) | 0.26866(117) | 0.25487(101) | 0.26107(12) | 0.25707(116) |
y | 0.07878(293) | 0.07064(93) | 0.06459(79) | 0.07032(10) | 0.07151(92) | ||
z | 0.08988(99) | 0.09272(29) | 0.09124(26) | 0.09182(31) | 0.09008(32) | ||
O4 | 18b | x | 0.23354(443) | 0.23049(147) | 0.22845(128) | 0.22647(15) | 0.22715(139) |
y | 0.22832(419) | 0.22190(139) | 0.21802(124) | 0.21610(14) | 0.22644(137) | ||
z | 0.14511(90) | 0.14435(29) | 0.14288(26) | 0.14395(32) | 0.14363(31) | ||
O5 | 18b | x | 0.27948(432) | 0.28277(134) | 0.28027(120) | 0.28261(14) | 0.28426(138) |
y | 0.01241(340) | 0.00952(108) | 0.00821(96) | 0.00574(11) | 0.00750(108) | ||
z | 0.15439(88) | 0.15531(28) | 0.15533(25) | 0.15575(32) | 0.15593(31) | ||
O5 | 18b | x | 0.08862(390) | 0.08638(135) | 0.08891(130) | 0.09185(15) | 0.08175(142) |
y | 0.17663(355) | 0.18556(111) | 0.18287(98) | 0.18683(11) | 0.17654(119) | ||
z | 0.30887(96) | 0.30360(34) | 0.30110(31) | 0.30254(39) | 0.30114(36) | ||
O7 | 18b | x | 0.38696(385) | 0.40039(114) | 0.40090(102) | 0.40206(122) | 0.40893(119) |
y | 0.02553(345) | 0.03365(109) | 0.03090(94) | 0.02853(108) | 0.03040(103) | ||
z | 0.22529(108) | 0.22508(33) | 0.22471(30) | 0.22402(37) | 0.22565(36) | ||
O8 | 18b | x | 0.03003(356) | 0.02130(124) | 0.01453(112) | 0.01586(136) | 0.02720(110) |
y | 0.24377(390) | 0.23812(137) | 0.23260(117) | 0.23938(140) | 0.23777(133) | ||
z | 0.37887(93) | 0.37953(30) | 0.37978(27) | 0.38019(33) | 0.37942(33) | ||
O9 | 18b | x | 0.16929(364) | 0.16909(102) | 0.16647(91) | 0.16012(108) | 0.16548(116) |
y | 0.08722(477) | 0.07784(149) | 0.07343(131) | 0.07253(166) | 0.07103(148) | ||
z | 0.22964(102) | 0.22290(34) | 0.22394(30) | 0.22531(39) | 0.22601(37) | ||
O10 | 18b | x | 0.38197(320) | 0.37669(94) | 0.37815(81) | 0.38196(103) | 0.37785(97) |
y | 0.17716(392) | 0.18014(122) | 0.18228(107) | 0.18206(126) | 0.18231(123) | ||
z | 0.27634(96) | 0.27933(28) | 0.27978(26) | 0.28120(31) | 0.27913(32) |
Site | Wyckoff position | Coordination | x | ||||
---|---|---|---|---|---|---|---|
0.16 | 0.33 | 0.5 | 0.66 | 0.75 | |||
M1 | 18b | x | 0.20400(87) | 0.20311(74) | 0.19913(39) | 0.19975(63) | 0.20041(54) |
y | 0.39463(90) | 0.39512(81) | 0.39599(39) | 0.39323(68) | 0.39487(60) | ||
z | 0.00226(31) | 0.00162(29) | 0.00153(14) | 0.00052(24) | 0.00050(20) | ||
M2 | 18b | x | 0.16085(90) | 0.16250(77) | 0.15918(42) | 0.15955(68) | 0.16088(58) |
y | 0.28102(81) | 0.28264(70) | 0.28139(35) | 0.28008(57) | 0.28111(49) | ||
z | 0.20025(29) | 0.19955(27) | 0.20022(13) | 0.19961(23) | 0.19988(19) | ||
M3 | 18b | x | 0.18868(98) | 0.18971(75) | 0.18706(37) | 0.18691(57) | 0.18647(49) |
y | 0.39699(69) | 0.39868(59) | 0.39776(29) | 0.39821(47) | 0.39814(40) | ||
z | 0.10871(29) | 0.10874(26) | 0.10892(13) | 0.10858(21) | 0.10861(19) | ||
M4 | 6a | x | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
y | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | ||
z | 0.07546(124) | 0.07296(106) | 0.07619(64) | 0.06982(116) | 0.07243(92) | ||
M5 | 6a | x | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
y | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | ||
z | 0.26548(45) | 0.26398(33) | 0.26494(17) | 0.26380(27) | 0.26398(23) | ||
V1 | 6a | x | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
y | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | ||
z | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | ||
V2 | 18b | x | 0.30895(64) | 0.31086(51) | 0.31161(26) | 0.31277(41) | 0.31262(35) |
y | 0.13384(80) | 0.13424(65) | 0.13797(32) | 0.13736(49) | 0.13841(42) | ||
z | 0.13171(27) | 0.13115(24) | 0.13124(12) | 0.13077(19) | 0.13051(17) | ||
V3 | 18b | x | 0.34822(82) | 0.34818(71) | 0.34884(34) | 0.34866(58) | 0.34773(51) |
y | 0.15433(88) | 0.15138(74) | 0.15021(35) | 0.14994(60) | 0.15038(52) | ||
z | 0.23438(27) | 0.23495(23) | 0.23424(11) | 0.23394(18) | 0.23392(15) | ||
O1 | 18b | x | 0.14989(208) | 0.15121(174) | 0.15403(91) | 0.15629(145) | 0.15313(122) |
y | 0.00789(256) | 0.00554(213) | 0.00795(122) | 0.00721(191) | 0.00630(166) | ||
z | 0.00919(73) | 0.00777(56) | 0.01159(33) | 0.00926(50) | 0.00966(43) | ||
O2 | 6a | x | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
y | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | ||
z | 0.45103(110) | 0.45300(86) | 0.45348(48) | 0.45288(74) | 0.45268(66) | ||
O3 | 18b | x | 0.25564(248) | 0.26955(220) | 0.26840(111) | 0.26469(177) | 0.26502(151) |
y | 0.07136(203) | 0.06666(170) | 0.07319(90) | 0.07053(140) | 0.06886(119) | ||
z | 0.09112(69) | 0.08939(57) | 0.09158(28) | 0.09074(43) | 0.09139(37) | ||
O4 | 18b | x | 0.22423(315) | 0.23097(247) | 0.22312(129) | 0.23247(209) | 0.22702(177) |
y | 0.22377(301) | 0.19674(205) | 0.20931(120) | 0.20610(188) | 0.20474(156) | ||
z | 0.14396(66) | 0.14437(54) | 0.14246(28) | 0.14270(45) | 0.14234(38) | ||
O5 | 18b | x | 0.28686(303) | 0.29115(239) | 0.28194(126) | 0.28187(197) | 0.28397(170) |
y | 0.00478(249) | 0.00082(191) | 0.00850(102) | 0.00290(159) | 0.00167(136) | ||
z | 0.15293(64) | 0.15382(55) | 0.15435(26) | 0.15396(44) | 0.15442(37) | ||
O6 | 18b | x | 0.08516(272) | 0.09116(216) | 0.09040(127) | 0.09600(204) | 0.09473(177) |
y | 0.18633(251) | 0.19788(178) | 0.18816(97) | 0.19368(154) | 0.18903(134) | ||
z | 0.30819(72) | 0.30275(63) | 0.30187(33) | 0.30142(53) | 0.29952(45) | ||
O7 | 18b | x | 0.39283(278) | 0.39716(204) | 0.40329(105) | 0.39709(167) | 0.39638(144) |
y | 0.02534(238) | 0.02939(185) | 0.03182(101) | 0.02887(153) | 0.02810(131) | ||
z | 0.22314(74) | 0.22427(58) | 0.22413(31) | 0.22378(50) | 0.22339(42) | ||
O8 | 18b | x | 0.02177(276) | 0.00488(256) | 0.00899(127) | 0.00065(201) | 0.00104(176) |
y | 0.23691(297) | 0.23780(227) | 0.23627(121) | 0.23164(193) | 0.23287(166) | ||
z | 0.38138(70) | 0.38065(57) | 0.37927(28) | 0.37926(47) | 0.37933(40) | ||
O9 | 18b | x | 0.16981(263) | 0.16191(166) | 0.16535(91) | 0.16314(141) | 0.16676(123) |
y | 0.06834(297) | 0.07309(264) | 0.07376(138) | 0.07499(225) | 0.07531(192) | ||
z | 0.22590(83) | 0.22397(68) | 0.22198(32) | 0.22396(55) | 0.22210(43) | ||
O10 | 18b | x | 0.37551(214) | 0.37918(172) | 0.37850(91) | 0.38054(141) | 0.37942(117) |
y | 0.17194(264) | 0.17612(209) | 0.17798(115) | 0.18060(178) | 0.17980(152) | ||
z | 0.27814(67) | 0.27769(54) | 0.27846(27) | 0.27869(42) | 0.27825(36) |
Site | Wyckoff position | Coordination | T (K) | |||
---|---|---|---|---|---|---|
300 | 500 | 800 | 1000 | |||
M1 | 18b | x | 0.19789(20) | 0.19701(22) | 0.19657(24) | 0.19539(23) |
y | 0.39468(19) | 0.39421(21) | 0.39420(22) | 0.39402(21) | ||
z | 0.00227(7) | 0.00202(7) | 0.00156(8) | 0.00097(7) | ||
M2 | 18b | x | 0.15938(21) | 0.15893(24) | 0.15828(27) | 0.15673(26) |
y | 0.28058(19) | 0.28102(21) | 0.28199(22) | 0.28253(21) | ||
z | 0.20153(6) | 0.20126(7) | 0.20071(7) | 0.20015 (7) | ||
M3 | 18b | x | 0.18611(18) | 0.18632(20) | 0.18739(22) | 0.18773(21) |
y | 0.39600(15) | 0.39547(16) | 0.39498(17) | 0.39422(16) | ||
z | 0.10957(6) | 0.10917(7) | 0.10849(7) | 0.10779 (7) | ||
M4 | 6a | x | 0.0 | 0.0 | 0.0 | 0.0 |
y | 0.0 | 0.0 | 0.0 | 0.0 | ||
z | 0.07791(25) | 0.07829(26) | 0.07837(27) | 0.07864(25) | ||
M5 | 6a | x | 0.0 | 0.0 | 0.0 | 0.0 |
y | 0.0 | 0.0 | 0.0 | 0.0 | ||
z | 0.26521(8) | 0.26507(9) | 0.26455(9) | 0.26401(8) | ||
V1 | 6a | x | 0.0 | 0.0 | 0.0 | 0.0 |
y | 0.0 | 0.0 | 0.0 | 0.0 | ||
z | 0.0 | 0.0 | 0.0 | 0.0 | ||
V2 | 18b | x | 0.31139(13) | 0.31171(14) | 0.31226(15) | 0.31273(14) |
y | 0.13722(16) | 0.13764(17) | 0.13835(19) | 0.13961(17) | ||
z | 0.13194(6) | 0.13178(6) | 0.13133(7) | 0.13086(6) | ||
V3 | 18b | x | 0.34894(17) | 0.34909(18) | 0.34920(19) | 0.34949(18) |
y | 0.15033(17) | 0.15147(18) | 0.15300(20) | 0.15376(19) | ||
z | 0.23506(5) | 0.23480(6) | 0.23428(6) | 0.23367(6) | ||
O1 | 18b | x | 0.15420(48) | 0.15528(52) | 0.15570(55) | 0.15411(50) |
y | 0.00919(64) | 0.01191(69) | 0.01470(70) | 0.01527(65) | ||
z | 0.01253(16) | 0.01196(18) | 0.01121(19) | 0.01110(18) | ||
O2 | 6a | x | 0.0 | 0.0 | 0.0 | 0.0 |
y | 0.0 | 0.0 | 0.0 | 0.0 | ||
z | 0.45670(24) | 0.45692(26) | 0.45781(27) | 0.45902(25) | ||
O3 | 18b | x | 0.26632 (59) | 0.26471 (58) | 0.26360 (61) | 0.26365 (57) |
y | 0.07378(51) | 0.07420(50) | 0.07654(53) | 0.07809(50) | ||
z | 0.09118(16) | 0.09092(16) | 0.09092(17) | 0.09163 (16) | ||
O4 | 18b | x | 0.22547(60) | 0.22530(66) | 0.22608(71) | 0.22777(66) |
y | 0.22454(59) | 0.22381(64) | 0.22273(70) | 0.22310 (65) | ||
z | 0.14446(14) | 0.14456(15) | 0.14442(16) | 0.14425(15) | ||
O5 | 18b | x | 0.28142(60) | 0.28065(66) | 0.27925(72) | 0.27611(65) |
y | 0.00965(50) | 0.01064(56) | 0.01034(62) | 0.00987 (58) | ||
z | 0.15586(12) | 0.15534(14) | 0.15444(15) | 0.15381 (13) | ||
O6 | 18b | x | 0.08717(62) | 0.08844(68) | 0.08881(73) | 0.08598(67) |
y | 0.17671(50) | 0.17756(55) | 0.17791(60) | 0.17794(55) | ||
z | 0.30269(16) | 0.30337(19) | 0.30368(21) | 0.30342(19) | ||
O7 | 18b | x | 0.40284(55) | 0.40114(62) | 0.40041(68) | 0.40199(63) |
y | 0.03479(50) | 0.03672(56) | 0.03941(62) | 0.04051(57) | ||
z | 0.22472(14) | 0.22436(16) | 0.22374(17) | 0.22245(16) | ||
O8 | 18b | x | 0.02467(56) | 0.02445(63) | 0.02367(71) | 0.02520(67) |
y | 0.24006(54) | 0.24124(61) | 0.24374(66) | 0.24591(61) | ||
z | 0.37940(13) | 0.37930(15) | 0.37903(16) | 0.37883(15) | ||
O9 | 18b | x | 0.17002(49) | 0.16967(55) | 0.17027(61) | 0.17065(56) |
y | 0.07773(65) | 0.07766(74) | 0.07877(81) | 0.07876(73) | ||
z | 0.22457(17) | 0.22528(19) | 0.22567(22) | 0.22483(20) | ||
O10 | 18b | x | 0.37960(49) | 0.37941(54) | 0.38006(58) | 0.37967(55) |
y | 0.18284(54) | 0.18313(60) | 0.18346(65) | 0.18534(61) | ||
z | 0.27829(14) | 0.27770(15) | 0.27717(16) | 0.27688(14) |
Site | Wyckoff position | Coordination | T (K) | |||
---|---|---|---|---|---|---|
300 | 600 | 850 | 1150 | |||
M1 | 18b | x | 0.19748(24) | 0.19760(27) | 0.19733(24) | 0.19148(26) |
y | 0.39446(23) | 0.39410(25) | 0.39380(22) | 0.39198(22) | ||
z | 0.00189(8) | 0.00150(9) | 0.00096(8) | 0.00089(8) | ||
M2 | 18b | x | 0.15897(27) | 0.15847(30) | 0.15811(27) | 0.15321(30) |
y | 0.28091(22) | 0.28135(24) | 0.28224(22) | 0.28426(23) | ||
z | 0.20030(8) | 0.19997(8) | 0.19947(7) | 0.19733(7) | ||
M3 | 18b | x | 0.18816(22) | 0.18844(24) | 0.18887(22) | 0.18888(23) |
y | 0.39672(17) | 0.39590(19) | 0.39526(17) | 0.39511(17) | ||
z | 0.10902(7) | 0.10838(8) | 0.10764(7) | 0.10534(7) | ||
M4 | 6a | x | 0.0 | 0.0 | 0.0 | 0.0 |
y | 0.0 | 0.0 | 0.0 | 0.0 | ||
z | 0.07554(33) | 0.07506(35) | 0.07647(29) | 0.07874(25) | ||
M5 | 6a | x | 0.0 | 0.0 | 0.0 | 0.0 |
y | 0.0 | 0.0 | 0.0 | 0.0 | ||
z | 0.26465(9) | 0.26439(10) | 0.26410(9) | 0.26320(9) | ||
V1 | 6a | x | 0.0 | 0.0 | 0.0 | 0.0 |
y | 0.0 | 0.0 | 0.0 | 0.0 | ||
z | 0.0 | 0.0 | 0.0 | 0.0 | ||
V2 | 18b | x | 0.31211(16) | 0.31264(17) | 0.31318(15) | 0.31353(14) |
y | 0.13773(19) | 0.13886(21) | 0.13935(18) | 0.14255(20) | ||
z | 0.13136(7) | 0.13118(7) | 0.13081(6) | 0.12964(6) | ||
V3 | 18b | x | 0.34949(19) | 0.34912(22) | 0.34945(19) | 0.35086(19) |
y | 0.15161(21) | 0.15236(23) | 0.15380(21) | 0.15507(22) | ||
z | 0.23410(6) | 0.23387(7) | 0.23349(6) | 0.23175(6) | ||
O1 | 18b | x | 0.15406(56) | 0.15405(60) | 0.15388(53) | 0.14720(49) |
y | 0.00789(75) | 0.01024(80) | 0.01197(70) | 0.00701(71) | ||
z | 0.01214(20) | 0.01132(22) | 0.01149(20) | 0.01603(18) | ||
O2 | 6a | x | 0.0 | 0.0 | 0.0 | 0.0 |
y | 0.0 | 0.0 | 0.0 | 0.0 | ||
z | 0.45358(28) | 0.45438(31) | 0.45724(28) | 0.45883(27) | ||
O3 | 18b | x | 0.26735(64) | 0.26401(69) | 0.26318(61) | 0.26423(59) |
y | 0.07517(54) | 0.07628(58) | 0.07861(52) | 0.08374(53) | ||
y | 0.09047(17) | 0.09063(19) | 0.09040(17) | 0.09050(15) | ||
O4 | 18b | x | 0.22192(72) | 0.22216(79) | 0.22441(71) | 0.22346(70) |
y | 0.21888(70) | 0.21994(78) | 0.22050(69) | 0.21517(68) | ||
z | 0.14333(17) | 0.14374(18) | 0.14384(16) | 0.14162(15) | ||
O5 | 18b | x | 0.28262(76) | 0.28126(82) | 0.27928(73) | 0.26979(73) |
y | 0.01115(62) | 0.01027(69) | 0.00940(62) | 0.00897(68) | ||
z | 0.15372(15) | 0.15305(16) | 0.15237(14) | 0.15001(14) | ||
O6 | 18b | x | 0.08804(76) | 0.08938(82) | 0.08976(72) | 0.08961(80) |
y | 0.17908(61) | 0.17892(67) | 0.17949(60) | 0.18599(57) | ||
y | 0.30337(21) | 0.30390(23) | 0.30384(20) | 0.30174(19) | ||
O7 | 18b | x | 0.40413(66) | 0.40383(74) | 0.40296(67) | 0.40175(69) |
y | 0.03615(62) | 0.03847(68) | 0.04003(61) | 0.04051(64) | ||
z | 0.22401(17) | 0.22348(20) | 0.22306(17) | 0.21848(16) | ||
O8 | 18b | x | 0.01885(71) | 0.01965(79) | 0.02021(73) | 0.01509(77) |
y | 0.24050(67) | 0.24165(74) | 0.24397(66) | 0.24433(67) | ||
z | 0.37802(16) | 0.37779(18) | 0.37781(16) | 0.37820(16) | ||
O9 | 18b | x | 0.17064(60) | 0.17106(68) | 0.17199(61) | 0.17195(53) |
y | 0.07625(83) | 0.07671(91) | 0.07925(83) | 0.07877(82) | ||
z | 0.22433(21) | 0.22504(24) | 0.22491(21) | 0.22019(20) | ||
O10 | 18b | x | 0.37666(57) | 0.37743(64) | 0.37913(57) | 0.37923(59) |
y | 0.17956(67) | 0.17976(74) | 0.18212(67) | 0.18418(68) | ||
z | 0.27658(16) | 0.27628(18) | 0.27567(15) | 0.27402(14) |
This journal is © The Royal Society of Chemistry 2024 |